Clinical & Experimental Immunology
Latest Publications


TOTAL DOCUMENTS

8758
(FIVE YEARS 474)

H-INDEX

129
(FIVE YEARS 12)

Published By Wiley (Blackwell Publishing)

1365-2249, 0009-9104

Author(s):  
Zhenyu Liu ◽  
Xueqin Li ◽  
Ningning Fan ◽  
Hong Wang ◽  
Wenli Xia ◽  
...  

Abstract Newly identified PD-1 hiCXCR5 –CD4 + T cells, termed as peripheral helper T cells (Tph), have been found elevated and playing pathogenic role in some autoimmune diseases like systemic lupus erythematosus (SLE) and rheumatic arthritis (RA). However, the potential role of Tph cells in Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) remains unclear. Here, we explored the potential clinical significance of circulating Tph cells in the pathogenesis of AAV. Comparing 32 active AAV patients and 18 age- and sex-matched healthy controls (HCs), we found that the frequency of circulating Tph cells was significantly expanded in active AAV patients. Besides, programmed death 1 (PD-1) expression on the surface of Tph cells was significantly up-regulated in active AAV patients. Importantly, the frequency of circulating Tph cells was greatly decreased in AAV patients after receiving treatment. Tph cells frequency was positively correlated with the Birmingham Vasculitis Activity Score (BVAS), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), neutrophil lymphocyte ratio (NLR) and cellular crescent in active AAV patients, but negatively correlated with fibrosus crescent. Tph cells frequency was also positively correlated with naïve B cells, serum concentration of MPO-ANCAs, serum tumor necrosis factor-α (TNF-α), IL-4, IL-21 and IL-12. However, serum IL-10 exhibited negative correlation with circulating Tph cells in active AAV patients. These results demonstrated that circulating Tph cells are greatly expanded in active AAV patients and are positively associated with serum MPO-ANCAs and disease activity, thus contributing to the pathogenesis of AAV.


Author(s):  
Arnold Awuah ◽  
Ava Zamani ◽  
Fariba Tahami ◽  
Mark Davis ◽  
Louis Grandjean ◽  
...  

Abstract Understanding the T cell response to SARS-CoV-2 is key in patients who lack antibody production. We demonstrate the applicability of a functional assay to measure the T cell response in a cohort of patients with immunodeficiency.


Author(s):  
Bianca L Ferreira ◽  
Ivan Ramirez-Moral ◽  
Natasja A Otto ◽  
Reinaldo Salomão ◽  
Alex F de Vos ◽  
...  

Abstract Pseudomonas (P.) aeruginosa is a common respiratory pathogen that causes injurious airway inflammation during acute pneumonia. PPAR (peroxisome proliferator-activated receptor)-γ is involved in the regulation of metabolic and inflammatory responses in different cell types and synthetic agonists of PPAR-γ exert anti-inflammatory effects on myeloid cells in vitro and in models of inflammation in vivo. We sought to determine the effect of the PPAR-γ agonist pioglitazone on airway inflammation induced by acute P. aeruginosa pneumonia, focusing on bronchial epithelial cells. Mice pretreated with pioglitazone or vehicle (-24 and -1 hour) were infected with P. aeruginosa via the airways. Pioglitazone treatment was associated with increased expression of chemokine (Cxcl1, Cxcl2, Ccl20) and cytokine genes (Tnfa, Il6, Cfs3) in bronchial brushes obtained 6 hours after infection. This proinflammatory effect was accompanied by increased expression of Hk2 and Pfkfb3, genes encoding rate limiting enzymes of glycolysis; concurrently, the expression of Sdha, important for maintaining metabolite flux in the tricarboxylic acid cycle, was reduced in bronchial epithelial cells of pioglitazone treated-mice. Pioglitazone inhibited bronchoalveolar inflammatory responses measured in lavage fluid. These results suggest that pioglitazone exerts a selective proinflammatory effect on bronchial epithelial cells during acute P. aeruginosa pneumonia, possibly by enhancing intracellular glycolysis.


Author(s):  
Greg Hodge ◽  
Hubertus Jersmann ◽  
Hai B Tran ◽  
Patrick F Asare ◽  
Minnu Jayapal ◽  
...  

Abstract We previously showed increased steroid resistant CD28null CD8+ senescent lymphocyte subsets in peripheral blood from COPD patients. These cells expressed decreased levels of the glucocorticoid receptor (GCR), suggesting their contribution to the steroid resistant property of these cells. COPD is a disease of the small airways. We therefore hypothesized that there would be a further increase in these steroid resistant lymphocytes in the lung, particularly in the small airways. We further hypothesized that the pro-inflammatory/cytotoxic potential of these cells could be negated using prednisolone with low-dose cyclosporin A. Blood, bronchoalveolar lavage, large proximal and small distal airway brushings were collected from 11 COPD patients and 10 healthy aged-matched controls. The cytotoxic mediator granzyme b, pro-inflammatory cytokines IFNγ/TNFα, and GCR were determined in lymphocytes subsets before and after their exposure to 1µM prednisolone and/or 2.5ng/mL cyclosporin A. Particularly in the small airways, COPD subjects showed an increased percentage of CD28null CD8 T-cells and NKT-like cells, with increased expression of granzyme b, IFNγ and TNFα and a loss of GCR, compared with controls. Significant negative correlations between small airway GCR expression and IFNγ/TNFα production by T and NKT-like cells (eg, T-cell IFNγ R= -.834, p=.031) and with FEV1 (R= -890) were shown. Cyclosporine A and prednisolone synergistically increased GCR expression and inhibited pro-inflammatory cytokine production by CD28null CD8- T and NKT-like cells. COPD is associated with increased pro-inflammatory CD28null CD8+ T and NKT-like cells in the small airways. Treatments that increase GCR in these lymphocyte subsets may improve efficacy of clinical treatment.


Author(s):  
Ying Xia ◽  
Aqing Liu ◽  
Wentao Li ◽  
Yunhe Liu ◽  
Guan Zhang ◽  
...  

Abstract Naïve T and T memory cell subsets are closely related to immune response and can provide important information for the diagnosis and treatment of immunological and hematological disorders. Lymphocyte compartment undergo dramatic changes during adulthood; age-related reference values derived from healthy individuals are crucial. However, extensively detailed reference values of peripheral blood lymphocytes in whole spectrum of adulthood detected by multi-color flow cytometry on a single platform are rare. 309 healthy adult volunteers were recruited from Tianjin in China. The absolute counts and percentages of CD3+CD4+ T cells, CD3+CD8+ T cells, naïve T cells (Tn), T memory stem cells (Tscm), central memory T cells (Tcm), effector memory T cells (Tem), terminal effector T cells (Tte) were detected by flow cytometry with single platform technologies. Reference range of absolute counts and percentage of T lymphocyte subsets were formulated by different age and gender. The results showed that Tn and Tscm cells, which had stem cell properties, decreased with aging; while, Tcm and Tem increased with aging, which increased from 18 to 64 years old but presented no significant change over the 65 years old. Gender had influence on the fluctuation of lymphocyte subsets, absolute count of CD3+CD8+, CD8+ Tcm, CD8+ Tem in male were higher than those in female. The reference values of percentages and absolute numbers of naïve T and T memory cell subsets can help doctors to understand the immune state of patients and evaluate conditions of prognosis then adjust treatment for patients.


Author(s):  
Arezoo Gowhari Shabgah ◽  
Zaid Mahdi Jaber Al-Obaidi ◽  
Heshu Sulaiman Rahman ◽  
Walid Kamal Abdelbasset ◽  
Wanich Suksatan ◽  
...  

Abstract Cancer is considered a life-threatening disease, and several factors are involved in its development. Chemokines are small proteins that physiologically exert pivotal roles in lymphoid and non-lymphoid tissues. The imbalance or dysregulation of chemokines has contributed to the development of several diseases, especially cancer. CCL19 is one of the homeostatic chemokines that is abundantly expressed in the thymus and lymph nodes. This chemokine, which primarily regulates immune cell trafficking, is involved in cancer development. Through the induction of anti-tumor immune responses and inhibition of angiogenesis, CCL19 exerts tumor-suppressive functions. In contrast, CCL19 also acts as a tumor-supportive factor by inducing inflammation, cell growth, and metastasis. Moreover, CCL19 dysregulation in several cancers, including colorectal, breast, pancreatic, and lung cancers, has been considered a tumor biomarker for diagnosis and prognosis. Using CCL19-based therapeutic approaches has also been proposed to overcome cancer development. This review will shed more light on the multifarious function of CCL19 in cancer and elucidate its application in diagnosis, prognosis, and even therapy. It is expected that the study of CCL19 in cancer might be promising to broaden our knowledge of cancer development and might introduce novel approaches in cancer management.


Author(s):  
Andrea Scheffschick ◽  
Sina Fuchs ◽  
Vivianne Malmström ◽  
Iva Gunnarsson ◽  
Hanna Brauner

Abstract Systemic lupus erythematosus (SLE) is a multi-organ inflammatory disease with kidney inflammation, lupus nephritis (LN), being one of the most severe manifestations. Immune complex deposits, particularly in glomeruli, and T cells, B cells, and myeloid cells, mainly with extraglomerular localization, contribute to the inflammatory process. Natural killer (NK) cells have been suggested to play a role in autoimmune diseases, but have not been investigated in detail in renal lupus before. In this exploratory study, we performed the first characterization of NK cell number and distribution in LN kidney biopsies. Twelve SLE patients were analysed in the active phase of disease and five patients following immunosuppressive therapy. CD56 + cells, corresponding to NK cells or NKlike T cells, were identified in all patients, however, with reduced numbers in four out of five patients at follow up. Furthermore, cells were present in the kidney interstitium and peri-glomerular areas, but only rarely in glomeruli. Fluorescent co-staining of CD56 or NKp46 and CD3 revealed the presence of both CD56 +/NKp46 +CD3 -NK cells and CD56 +/NKp46 +CD3 +NK-like T cells. Compared to healthy kidney sections, one out of four LN patients showed increased numbers of NK cells. A correlation between CD56 + or NK cells with clinical parameters could not be observed, perhaps due to the small patient cohort. In conclusion, we have identified NK cells and NKlike T cells in LN kidney and performed the first detailed analysis of their localization during active and inactive disease. Their role in LN pathogenesis is, however, unclear and deserves further studies.


Author(s):  
See-Tarn Woon ◽  
Julia Mayes ◽  
Alexander Quach ◽  
Hilary Longhurst ◽  
Antonio Ferrante ◽  
...  

Abstract Primary immunodeficiency disorders comprise a rare group of mostly monogenic disorders caused by inborn errors of immunity. The majority can be identified by either Sanger sequencing or Next Generation Sequencing. Some disorders result from large insertions or deletions leading to copy number variations (CNV). Sanger sequencing may not identify these mutations. Here we present droplet digital PCR as an alternative cost-effective diagnostic method to identify CNV in these genes. The data from patients with large deletions of NFKB1, SERPING1 and SH2D1A are presented.


Author(s):  
Wei Yang ◽  
Xu-Dong Huang ◽  
Tao Zhang ◽  
You-Bin Zhou ◽  
Yong-Cheng Zou ◽  
...  

Abstract Nucleus pulposus (NP) cell pyroptosis plays a critical role in the pathogenesis of intervertebral disk degeneration (IDD). MIR155 host gene (MIR155HG) is a long non-coding RNA with pro-inflammatory activity. However, very little is known about its role in NP cell pyroptosis. This study aimed to observe the impact of MIR155HG on cell pyroptosis and to explore the underlying mechanism in human degenerative NP cells. Our results demonstrated that MIR155HG expression was significantly increased in human degenerative NP tissue samples and showed a positive correlation with Pfirrmann score. Overexpression of MIR155HG through a lentiviral vector decreased miR-223-3p levels, up-regulated NLRP3 expression and induced cell pyroptosis in human degenerative NP cells. A ceRNA action mode was identified among MIR155HG, miR-223-3p and NLRP3. The stimulatory effect of MIR155HG on human degenerative NP cell pyroptosis was significantly reversed by pretreatment with miR-223-3p mimic or NLRP3 siRNA. In summary, these data suggest that MIR155HG sponges miR-223-3p to promote NLRP3 expression, leading to induction of cell pyroptosis in human degenerative NP cells. Targeting MIR155HG could be a novel and promising strategy to slow down the progression of IDD.


Author(s):  
Xue-Wei Yang ◽  
Hong Li ◽  
Ting Feng ◽  
Wei Zhang ◽  
Xiang-Rong Song ◽  
...  

Abstract Impairment of antigen-presenting functions is a key mechanism contributing to sepsis-induced immunosuppression. Recently, γδ T cells have been demonstrated as professional antigen-presenting cells (APCs); however, their role in sepsis remains unknown. In this in vitro study, the APC function of human peripheral γδ T cells was assessed using samples collected from 42 patients with sepsis and 27 age-matched healthy controls. The APC-related markers HLA-DR, CD27, CD80, and CCR7 on fresh γδ T cells were significantly higher in patients with sepsis compared with matched controls; however, they responded poorly to 4-hydroxy-3-methyl-2-butenyl pyrophosphate (HMBPP) stimulation, characterised by the deactivation of these APC markers and impaired proliferation. Furthermore, the adhesion function of γδ T cells, essential for antigen presentation, was greatly reduced in patients with sepsis; for instance, in co-cultures with green fluorescent protein-expressing Escherichia coli, HMBPP-activated γδT cells from healthy individuals adhered to E. coli efficiently, whereas no such phenomenon was observed with respect to γδT cells from patients with sepsis. In line with these results, in co-cultures with isolated CD4 + αβ T cells, HMBPP-activated γδT cells of healthy individuals promoted the efficient proliferation of CD4 + αβ T cells, whereas γδT cells from patients with sepsis did not do so. In conclusion, our findings show that the antigen-presenting function of γδ T cells is severely impaired in patients with sepsis and the mechanisms behind need further study.


Sign in / Sign up

Export Citation Format

Share Document