scholarly journals Comment on: “Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts”

2019 ◽  
Vol 26 (6) ◽  
pp. 577-579 ◽  
Author(s):  
Arjun Magge ◽  
Abeed Sarker ◽  
Azadeh Nikfarjam ◽  
Graciela Gonzalez-Hernandez
2019 ◽  
Vol 26 (6) ◽  
pp. 580-581
Author(s):  
Anne Cocos ◽  
Alexander G Fiks ◽  
Aaron J Masino

Abstract We appreciate the detailed review provided by Magge et al1 of our article, “Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts.” 2 In their letter, they present a subjective criticism that rests on concerns about our dataset composition and potential misinterpretation of comparisons to existing methods. Our article underwent two rounds of extensive peer review and has been cited 28 times1 in the nearly 2 years since it was published online (February 2017). Neither the reviewers nor the citing authors raised similar concerns. There are, however, portions of the commentary that highlight areas of our work that would benefit from further clarification.


2021 ◽  
Vol 14 (2) ◽  
pp. 93
Author(s):  
Kristina Gorshkova ◽  
Victoria Zueva ◽  
Maria Kuznetsova ◽  
Larisa Tugashova

Author(s):  
Jessica Barbosa Diniz ◽  
Filipe R. Cordeiro ◽  
Pericles B. C. Miranda ◽  
Laura A. Tomaz Da Silva

Deep Learning is a research area under the spotlight in recent years due to its successful application to many domains, such as computer vision and image recognition. The most prominent technique derived from Deep Learning is Convolutional Neural Network, which allows the network to automatically learn representations needed for detection or classification tasks. However, Convolutional Neural Networks have some limitations, as designing these networks are not easy to master and require expertise and insight. In this work, we present the use of Genetic Algorithm associated to Grammar-based Genetic Programming to optimize Convolution Neural Network architectures. To evaluate our proposed approach, we adopted CIFAR-10 dataset to validate the evolution of the generated architectures, using the metric of accuracy to evaluate its classification performance in the test dataset. The results demonstrate that our method using Grammar-based Genetic Programming can easily produce optimized CNN architectures that are competitive and achieve high accuracy results.


Sign in / Sign up

Export Citation Format

Share Document