Control of Onion Thrips and its Tolerance to Certain Chlorinated Hydrocarbons1

1956 ◽  
Vol 49 (3) ◽  
pp. 333-335 ◽  
Author(s):  
Ben H. Ricilardson ◽  
George P. Wene
Keyword(s):  
HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 506d-506
Author(s):  
Robert R. Tripepi ◽  
Holly J. Schwager ◽  
Mary W. George ◽  
Joseph P. McCaffrey

Two insecticides, acephate or azadirachtin, were added to tissue culture media to determine their effectiveness in controlling onion thrips (Thrips tabaci Lindeman.) and to determine if these insecticides could damage the plant shoot cultures. To test for insecticide phytotoxicity, microshoots from European birch (Betula pendula), American elm (Ulmus americana), `Pink Arola' chrysanthemum (Dendranthema grandiflora), `America' rhododendron (Rhododendron catawbiense), `Golden Emblem' rose (Rosa hybrida), and `Gala' apple (Malus domestica) were placed in 130-ml baby food jars containing 25 ml of medium supplemented with 6.5, 13, or 26 mg/l Orthene® (contained acephate) or 0.55, 1.1, or 2.2 ml/l Azatin® (contained azadirachtin). Control jars lacked insecticide. To test for thrips control, 13 mg/l Orthene® or 0.55 ml/l Azatin® was added to Murashige and Skoog medium, and 10 thrips were placed on `Gala' apple microshoots in each jar. Jars were sealed with plastic wrap. In both studies, microshoot dry weight and heights were determined. In the second study, the total number of thrips per jar was also determined 3 weeks after inoculation. Microshoots on Orthene®-treated media lacked phytotoxicity symptoms, regardless of the concentration used. In contrast, Azatin® hindered plant growth, decreasing shoot height or dry weight by up to 85% depending on the species. Both insecticides prevented thrips populations from increasing, since less than 10 thrips were found in jars with insecticide-treated medium. Control jars, however, contained an average of almost 70 thrips per jar. This study demonstrated that both Orthene® and Azatin® were effective for eradicating thrips from plant tissue cultures, but Orthene® should probably be used because Azatin® was phytotoxic to all species tested.


2021 ◽  
Vol 83 (1) ◽  
pp. 21-24
Author(s):  
V Karuppaiah ◽  
S J Gawande ◽  
V Mahajan ◽  
M Singh

2009 ◽  
Vol 34 (1) ◽  
Author(s):  
Anthony M. Shelton ◽  
Mao Chen ◽  
Weiwei Li
Keyword(s):  

Plant Disease ◽  
2006 ◽  
Vol 90 (10) ◽  
pp. 1359-1359 ◽  
Author(s):  
M. E. Miller ◽  
R. R. Saldana ◽  
M. C. Black ◽  
H. R. Pappu

Iris yellow spot virus (IYSV; family Bunyaviridae, genus Tospovirus) has emerged as a potentially devastating and widespread virus of onion. IYSV was first reported in the United States from Idaho in 1993 and has since spread to many of the onion-producing areas (1). In South America, the most recent reports of the virus on onion were from Peru and Chile (2,4). In 2005, onion plants in Uvalde County, Texas exhibited necrotic lesions on leaves typical of IYSV and disease incidence approached 100% in some fields with yield loss and quality problems. Five of six plants tested were positive for IYSV with double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA; Agdia Inc., Elkhart, IN). In 2006, similar lesions were observed on onion plants in Uvalde County and approximately 400 km south in Hidalgo and Cameron counties. Infection points generally started as a single plant near the edge of fields and spread to plants in a 3- to 4-m area after 1 to 2 weeks. Early-season disease incidence was low in onions grown for bulbs and transplants, <10% in 2006. Disease incidence increased in some fields until the crop was harvested. Leaves of symptomatic plants were tested for IYSV and Tomato spotted wilt virus (TSWV) using DAS-ELISA, and 18 of 23 samples from the Hidalgo County area and 12 of 21 samples from the Uvalde County area were positive for IYSV. All samples tested for TSWV from these counties were negative. Virus infection in some ELISA-positive plants was verified by reverse transcription-polymerase chain reaction (RT-PCR) using primers derived from the small RNA of IYSV. The primers flanked the IYSV nucleocapsid (N) gene (5′-TAA AAC AAA CAT TCA AAC AA-3′ and 5′-CTC TTA AAC ACA TTT AAC AAG CAC-3′ (3). RT-PCR gave a PCR product of expected size (approximately 1.2 kb). The DNA amplicon was cloned and sequenced (GenBank Accession No. DQ658242). Nucleotide sequence analysis confirmed the identity of the amplicon as that of IYSV N gene and sequence comparisons with known IYSV N gene sequences showed 95 to 98% sequence identity. The primary vector of IYSV, onion thrips (Thrips tabaci), is a widespread and destructive pest of onion in south Texas. The year-to-year incidence of IYSV and the severity of the disease will probably depend on the onion thrips population levels. Bulb yield reduction could be severe during years with high thrips populations. More research is needed to determine the impact of IYSV on bulb yield in Texas, the relationship between IYSV incidence and T. tabaci population levels, and oversummering hosts. To our knowledge, this is the first known report of IYSV in Texas. References: (1) D. H. Gent et al. Plant Dis. 88:446, 2004, (2) S. W. Mullis et al. Plant Dis. 90:377, 2006, (3) H. Pappu et al. Arch. Virol. 151:1015, 2006. (4) M. Rosales et al. Plant Dis. 89:1245, 2005.


Sign in / Sign up

Export Citation Format

Share Document