Prey preference of the predatory miteNeoseiulus californicus(Mesostigmata: Phytoseiidae) when offered two major pest species, the two spotted spider mite and the onion thrips

2016 ◽  
Vol 42 (6) ◽  
pp. 319-323 ◽  
Author(s):  
Hasan Rahmani ◽  
Monasadat Hoseini ◽  
Alireza Saboori ◽  
Andreas Walzer
2020 ◽  
Vol 113 (4) ◽  
pp. 1804-1809
Author(s):  
E P de Sousa Neto ◽  
J de A Mendes ◽  
R M C Filgueiras ◽  
D B Lima ◽  
R N C Guedes ◽  
...  

Abstract Integrated control tactics are often necessary for pest management. This is especially true for organisms such as the two-spotted spider mite, Tetranychus urticae Koch. The management of this mite pest species relies on pesticide use, but its short life cycle associated with high selection pressure results in frequent problems of acaricide resistance and population outbreaks. Therefore, combining acaricides and natural enemies is an appealing strategy for managing this pest species. The predatory mite Neoseiulus idaeus Denmark & Muma (Phytoseiidae) is important in arid environments, where other natural enemies show low efficacy. Thus, we investigated the effects of representative acaricides used for managing spider mites around the world in several crops (i.e., abamectin, fenpyroximate, and azadirachtin), on the functional and numerical responses of the phytoseid predator N. idaeus to increasing egg densities of its prey. Acaricide exposure did not affect the type of N. idaeus functional response or attack rate (a). However, acaricide exposure decreased the amount of consumed prey and increased prey handling time (Th). All acaricides affected the numerical response of the predator, which reduced oviposition rates. Therefore, caution is required in attempts to integrate the control methods.


1974 ◽  
Vol 1 (1) ◽  
pp. 30-34
Author(s):  
W. V. Campbell ◽  
R. W. Batts ◽  
R. L. Robertson ◽  
D. A. Emery

Abstract The two-spotted spider mite, Tetranychus urticae Koch, is a major pest of peanuts in North Carolina. Mite populations increase during hot, dry weather and are especially destructive in August and September. The potential losses to peanuts due to mites prompted an investigation of the miticidal and ovicidal properties of fungicides and insecticides currently registered for peanuts as well as the evaluation of chemicals not registered on peanuts for control of the two-spotted spider mite. Plictran, Galecron, Trithion, Azodrin, Carzol, and Omite provided good suppression of the spider mite in field tests. Laboratory studies, using a five second dip technique, indicated Plictran, Galecron, and Trithion had good ovicidal properties. The fungicides Du-Ter and Benlate exhibited a low level of ovicidal action. Du-Ter recommended for leaf spot control gave good control of mites in the laboratory tests and suppressed mite buildup in greenhouse experiments.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
El-Sayed M. El-Saiedy ◽  
Shimaa F. Fahim

Abstract Background The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is a major pest of strawberry. It was necessary to control this mite pest that can reducing the quality and quantity of the fruits. In this regard, the effect of ZORO acaricide, Neoseiulus californicus (McGregor) and Amblyseius swirskii Athias-Henriot for suppressing the naturally occurring T. urticae populations on three strawberry cultivars were investigated. Results The two predatory mites and ZORO treatments significantly suppressed the populations of T. urticae below the control in all tested cultivars. In most cases of the current study, significantly lower numbers of T. urticae were generally observed in ZORO and N. californicus treatments compared to A. swirskii treatment. In all cultivars, the overall mean of reduction percentages of T. urticae populations in N. californicus and ZORO treatments were not statistically different, and all were significantly higher than that in A. swirskii treatment. Conclusion The present results suggested that the release of N. californicus and the application of ZORO acaricide could be promising strategies for controlling T. urticae on strawberry, although the release of N. californicus appears to be more competent tactic than ZORO acaricide.


2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Hosam M. K. H. El-Gepaly

AbstractSorghum panicles offer a very rich microenvironment for many insect pest species and their natural enemies. Thirty arthropod species belonging to 28 families, pertaining to 9 orders were obtained from sorghum panicles planted in Sohag Governorate, Egypt, during the 3 successive seasons of 2016–2018. Out of these species were 14 pests, 16 predators, and 3 parasitoids. Lepidopteran and hemipteran pests were the most dominant species-infested sorghum-panicles during the mature stages of the panicles. Three microlepidopteran pests, the noctuid, Eublemma (Autoba) gayneri (Roth.); the pyralid, Cryptoblabes gnidiella Millière, and the cosmopterigid, Pyroderces simplex Walsingham, were recorded as major pest species infesting sorghum panicles in Sohag Governorate. The dipteran parasitoid species, Nemorilla floralis (Fallen) (Tachinidae) emerged from the pupae of the E. gayneri and C. gnidiella, while the hymenopteran parasitoid, Brachymeria aegyptiaca (Chalcididae) was obtained from the pupae of all the studied microlepidopteran pests. Spiders, coccinellids, and Orius spp. were the dominant predators collected form panicles. Post-harvest, larvae, and pupae of lepidopteran pests, especially P. simplex recorded (147, 96, and 79 larvae) and (47, 30, and 73 pupae)/10 panicles in 2016, 2017, and 2018 seasons, respectively.


2019 ◽  
Vol 62 (1) ◽  
Author(s):  
Kyeongnam Kim ◽  
Yong Ho Lee ◽  
Gayoung Kim ◽  
Byung-Ho Lee ◽  
Jeong-Oh Yang ◽  
...  

Abstract Two spotted spider mite, Tetranychus urticae, is a polyphagous pest to a variety of plants and they are hard to be controlled due to occurrence of resistance to acaricides. In this study, biochemical evaluation after ethyl formate (EF) and phosphine (PH3) fumigation towards T. urticae might help officials to control them in quarantine purposes. PH3 fumigation controlled eggs (LC50; 0.158 mg/L), nymphs (LC50; 0.030 mg/L), and adults (LC50; 0.059 mg/L) of T. urticae, and EF effectively affected nymphs (LC50; 2.826 mg/L) rather than eggs (LC50; 6.797 mg/L) and adults (LC50; 5.836 mg/L). In a longer exposure time of 20 h, PH3 fumigation was 94.2-fold more effective tool for control of T. urticae than EF fumigant. EF and PH3 inhibited cytochrome c oxidase (COX) activity differently in both nymphs and adults of T. urticae. It confirmed COX is one of target sites of these fumigants in T. urticae and COX is involved in the respiratory chain as complex IV. Molecular approaches showed that EF fumigation completely down-regulated the expression of cox11 gene at the concentration of LC10 value, while PH3 up-regulated several genes greater than twofold in T. urticae nymphs treated with the concentration of LC50 value. These increased genes by PH3 fumigation are ndufv1, atpB, para, and ace, responsible for the expression of NADH dehydrogenase [ubiquinone] flavoprotein 1, ATP synthase, and acetylcholinesterase in insects, respectively. Lipidomic analyses exhibited a significant difference between two fumigants-exposed groups and the control, especially an ion with 815.46 m/z was analyzed less than twofold in the fumigants-treated group. It was identified as PI(15:1/18:3) and it may be used as a biomarker to EF and PH3 toxicity. These findings may contribute to set an effective control strategy on T. urticae by methyl bromide alternatives such as EF and PH3 because they have shared target sites on the respiratory chain in the pest.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Cenk Yucel

Abstract Background The two-spotted spider mite, Tetranychus urticae (Koch) (Acari: Tetranychidae), is a widely distributed plant-feeding pest that causes significant yield losses in a wide range of crops. Newly developed or improved environmentally friendly biocontrol agents serve as an alternative to traditional pest control tools. Experiment of the effects of 2 local fungal isolates of Beauveria bassiana (BGF14 and BCA32) was carried out against T. urticae under laboratory conditions. Results Both tested isolates had lethal effect in a short time after application, and this effect increased as time progressed. BGF14 and BCA32 isolates caused T. urticae mortality rates ranging from 25.88 to 61.92 and 32.36 to 62.03% when applied at the concentrations between 1×105 and 1×108 conidia/ml, respectively. According to the Probit analysis performed on the effect of fungi on T. urticae adults, the LC50 values of BGF14 and BCA32 isolates on the 7th day after inoculation were 2.6×106 and 6.3×104 conidia/ml, respectively, and the LT50 values for both fungi applied at a concentration of 108 conidia/ml were 2.14 and 2.23 days, respectively. Conclusions The 2 isolates of B. bassiana (BGF14 and BCA32) had the potentials to suppress T. urticae population and can be recommended as promising biocontrol agent candidates for control of T. urticae.


Sign in / Sign up

Export Citation Format

Share Document