scholarly journals First Report of Iris yellow spot virus on Onion (Allium cepa) in Texas

Plant Disease ◽  
2006 ◽  
Vol 90 (10) ◽  
pp. 1359-1359 ◽  
Author(s):  
M. E. Miller ◽  
R. R. Saldana ◽  
M. C. Black ◽  
H. R. Pappu

Iris yellow spot virus (IYSV; family Bunyaviridae, genus Tospovirus) has emerged as a potentially devastating and widespread virus of onion. IYSV was first reported in the United States from Idaho in 1993 and has since spread to many of the onion-producing areas (1). In South America, the most recent reports of the virus on onion were from Peru and Chile (2,4). In 2005, onion plants in Uvalde County, Texas exhibited necrotic lesions on leaves typical of IYSV and disease incidence approached 100% in some fields with yield loss and quality problems. Five of six plants tested were positive for IYSV with double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA; Agdia Inc., Elkhart, IN). In 2006, similar lesions were observed on onion plants in Uvalde County and approximately 400 km south in Hidalgo and Cameron counties. Infection points generally started as a single plant near the edge of fields and spread to plants in a 3- to 4-m area after 1 to 2 weeks. Early-season disease incidence was low in onions grown for bulbs and transplants, <10% in 2006. Disease incidence increased in some fields until the crop was harvested. Leaves of symptomatic plants were tested for IYSV and Tomato spotted wilt virus (TSWV) using DAS-ELISA, and 18 of 23 samples from the Hidalgo County area and 12 of 21 samples from the Uvalde County area were positive for IYSV. All samples tested for TSWV from these counties were negative. Virus infection in some ELISA-positive plants was verified by reverse transcription-polymerase chain reaction (RT-PCR) using primers derived from the small RNA of IYSV. The primers flanked the IYSV nucleocapsid (N) gene (5′-TAA AAC AAA CAT TCA AAC AA-3′ and 5′-CTC TTA AAC ACA TTT AAC AAG CAC-3′ (3). RT-PCR gave a PCR product of expected size (approximately 1.2 kb). The DNA amplicon was cloned and sequenced (GenBank Accession No. DQ658242). Nucleotide sequence analysis confirmed the identity of the amplicon as that of IYSV N gene and sequence comparisons with known IYSV N gene sequences showed 95 to 98% sequence identity. The primary vector of IYSV, onion thrips (Thrips tabaci), is a widespread and destructive pest of onion in south Texas. The year-to-year incidence of IYSV and the severity of the disease will probably depend on the onion thrips population levels. Bulb yield reduction could be severe during years with high thrips populations. More research is needed to determine the impact of IYSV on bulb yield in Texas, the relationship between IYSV incidence and T. tabaci population levels, and oversummering hosts. To our knowledge, this is the first known report of IYSV in Texas. References: (1) D. H. Gent et al. Plant Dis. 88:446, 2004, (2) S. W. Mullis et al. Plant Dis. 90:377, 2006, (3) H. Pappu et al. Arch. Virol. 151:1015, 2006. (4) M. Rosales et al. Plant Dis. 89:1245, 2005.

Plant Disease ◽  
2007 ◽  
Vol 91 (3) ◽  
pp. 327-327 ◽  
Author(s):  
C. A. Hoepting ◽  
H. F. Schwartz ◽  
H. R. Pappu

Iris yellow spot virus (IYSV [family Bunyaviridae, genus Tospovirus]), a potentially devastating disease of onion vectored by onion thrips (Thrips tabaci Lindeman), has been reported from most states in the western United States where significant onion production occurs, with the most recent report from Texas (1). In June 2006, volunteer onion (Allium cepa) plants in Orleans County, New York (Elba muckland) were found to have symptoms indicative of IYSV infection. The scapes (seed stalks) of the volunteer onions found at the edge of a cull pile from a 2005 onion crop exhibited diamond-shaped lesions, each with a distinct green center and a double yellow border. Approximately 25 of 100 plants of red and yellow onion cultivars exhibited characteristic IYSV lesions. The cull pile was composed primarily of locally grown onions, although a few of the bulbs were grown from imported bare-root transplants imported from Arizona. Symptomatic plants tested positive for IYSV using IYSV-specific antiserum from Agdia Inc. (Elkhart, IN) in a double-antibody sandwich-ELISA. The presence of IYSV was verified by reverse transcription (RT)-PCR using primers derived from the small RNA of IYSV (S-RNA). The primers flanked the IYSV nucleocapsid (N) gene (5′-TAA AAC AAA CAT TCA AAC AA-3′ and 5′-CTC TTA AAC ACA TTT AAC AAG CAC-3′ (3). RT-PCR assays produced a PCR amplicon of expected size (approximately 1.2 kb) and the product was cloned and sequenced. Nucleotide sequence analysis confirmed the identity of the amplicon as that of the IYSV S-RNA. Sequence comparisons showed 95 to 98% identity with known IYSV N gene sequences available in GenBank. The virus is poorly transmitted to onion by mechanical inoculation and we did not have access to a noninfested colony of the onion thrips vector to transfer the virus from these samples to noninfected onions. No asymptomatic plants were tested. Among the onion-growing states in the eastern United States, IYSV has previously only been reported from Georgia (2). To our knowledge, this is the first report of IYSV in New York and the greater northeastern United States. The finding of this disease in New York confirms further spread of the virus within North America and the need for research to develop more effective management options to reduce the impact of IYSV on onion crops. References: (1) M. Miller et al. Plant Dis. 90:1359, 2006. (2) S. W. Mullis et al. Plant Dis. 90:377, 2006. (3) H. R. Pappu et al. Arch. Virol. 151:1015, 2006.


Plant Disease ◽  
2010 ◽  
Vol 94 (11) ◽  
pp. 1373-1373 ◽  
Author(s):  
K. Lobin ◽  
A. Saison ◽  
B. Hostachy ◽  
S. P. Benimadhu ◽  
H. R. Pappu

Iris yellow spot virus (IYSV; family Bunyaviridae, genus Tospovirus) transmitted by thrips (Thrips tabaci Lindeman) is an economically important viral pathogen of bulb and seed onion (Allium cepa) crops in many onion-growing areas of the world (2,3). In Africa, IYSV has been reported in Reunion (4) and South Africa (1). In June 2008, diamond-shaped lesions that are typical of IYSV were observed on onion seed scapes in an onion plot of 0.25 ha at Reduit in the central part of Mauritius. Disease incidence was 80% with a severity of 50 to 75% of the scape surface area. Lodging was observed in 25% of the symptomatic plants. Twenty-two symptomatic plants were tested and found to be positive for IYSV when tested by double antibody sandwich (DAS)-ELISA with a commercially available kit (Agdia Inc., Elkhart, IN). The presence of the virus was confirmed by reverse transcription (RT)-PCR tests with primers 917L: 5′-TAAAACTTAACTAACACAAA-3′ and 56U: 5′-TCCTAAGTATTCACCAT-3′ as forward and reverse primers, respectively, for specific sequences flanking the CP gene. Another set of primers specific to the small (S) RNA of IYSV (5′-TAAAACAAACATTCAAACAA-3′ and 5′-CTCTTAAACACATTT AACAAGCAC-3′) produced an amplicon of approximately 1.2 kb that includes the 772-bp nucleocapsid (N) gene. The 1.2-kb amplicon was cloned and four clones were sequenced and consensus sequence was used for comparisons. Sequence analysis showed that the N gene of the IYSV isolate from Mauritius (GenBank Accession No. HM218822) shared the highest nucleotide sequence identity (99%) with several known IYSV N gene sequences (Accession Nos. FJ785835 and AM900393) available in the GenBank, confirming the presence of IYSV in the onion crops in Mauritius. A survey was subsequently carried out from July to November 2008 in major onion-growing localities at La Marie, Henrietta, Reduit, and Plaine Sophie (center); Bassin, La Ferme, and La Chaumiere (west); Grand Sable, Petit Sable, and Plaisance (south, southeast); and Belle Mare, Trou d'Eau Douce, and Palmar (east) to monitor the distribution of the disease on the island. Symptomatic samples with diamond-to-irregularly shaped lesions were observed and 155 symptomatic and 35 nonsymptomatic samples were collected and screened by DAS-ELISA for IYSV and Tomato spotted wilt virus (TSWV), another tospovirus reported to infect onion elsewhere. Sixty-six percent of the symptomatic samples screened (102 of 155) tested positive for IYSV. No IYSV was detected in the symptomless samples. There was no serological indication of TSWV infection in the samples. Samples that tested positive for IYSV were collected from Belle mare, Palmar, and Trou d'eau douce in the east and La Ferme in the west. Cultivars infected were Gandiole, Local Red, and Veronique. No IYSV was detected in the bulbs. The vector, T. tabaci, was observed in infected onion parcels surveyed and is known to occur in all onion-producing areas of the island. To our knowledge, this is the first report of IYSV in onion in Mauritius. Further surveys and monitoring of IYSV incidence, along with its impact on the yield, need to be established. References: (1) L. J. du Toit et al. Plant Dis. 91:1203, 2007. (2) D. H. Gent et al. Plant Dis. 88:446, 2004. (3) H. R. Pappu et al. Virus Res. 141:219, 2009. (4) I. Robène-Soustrade et al. Plant Pathol. 55:288, 2006.


Plant Disease ◽  
2007 ◽  
Vol 91 (10) ◽  
pp. 1365-1365 ◽  
Author(s):  
C. Córdoba-Sellés ◽  
C. Cebrián-Mico ◽  
A. Alfaro-Fernández ◽  
M. J. Muñoz-Yerbes ◽  
C. Jordá-Gutiérrez

Iris yellow spot virus (IYSV; family Bunyaviridae, genus Tospovirus) has a wide host range, with onion (Allium cepa L.) being one of the most economically important hosts. The first report of IYSV in Spain was from Albacete in 2003 (1) followed by the Canary Islands in 2005. In November of 2006, disease symptoms suspected to be caused by IYSV were observed on the central and outer leaves of commercial leeks plants (cvs. Asthow, Edison, and Shelton) from Alicante, Spain. Symptoms consisted of dry, white-to-straw-colored, spindle-shaped, irregular chlorotic and necrotic lesions on the leaves. Tissue from symptomatic leaves was sampled and analyzed by a double-antibody sandwich (DAS)-ELISA with specific polyclonal antibodies against Onion yellow dwarf virus (OYDV), Leek yellow stripe virus (LYSV) (Biorad Phyto-Diagnostics, Marnes-La Coquette, France), IYSV, and Tomato spotted wilt virus (TSWV) (Loewe Biochemica, Sauerlach, Germany). Five of seven leek samples belonging to the three cultivars tested were positive for IYSV. All samples were negative for the other viruses tested. The presence of IYSV was verified in the positive samples by reverse transcription (RT)-PCR using primers derived from the nucleocapsid (N) gene of IYSV (1). RT-PCR gave a PCR amplicon of expected size (approximately 790 bp) from symptomatic leek plants. The product of one of the positive leek samples was purified and sequenced (GenBank Accession No. EF427447). Nucleotide sequence analysis confirmed the identity of the amplicon as that of the IYSV N gene. Sequence comparisons showed 99% identity with the sequence of the IYSV Spanish isolate available in GenBank (Accession No. EF419888). Thrips tabaci is the primary vector of IYSV. Although the vector is present in Spain, the efficiency of the Mediterranean ecotype in transmitting the virus is not known. Leek has been reported to be a host of IYSV in countries such as the Netherlands, Reunion Island, Australia, and the United States (2). To our knowledge, this is the first report of natural infection of leek with IYSV in Spain. References: (1) C. Córdoba-Sellés et al. Plant Dis. 89:1243, 2005. (2) H. F. Schwartz et al. Plant Dis. 91:113, 2007.


Plant Disease ◽  
2008 ◽  
Vol 92 (8) ◽  
pp. 1247-1247 ◽  
Author(s):  
A. Bulajić ◽  
J. Jović ◽  
S. Krnjajić ◽  
M. Petrov ◽  
I. Djekić ◽  
...  

Iris yellow spot virus (IYSV; genus Tospovirus, family Bunyaviridae) is established in several European countries (France, Italy, The Netherlands, Poland, Slovenia, Spain, and the UK) and its distribution in the EU region has increased since 2002 (3). In July 2007, symptoms resembling those of IYSV were observed in an onion (Allium cepa) seed crop in the Sirig locality in Serbia. Onion plants exhibited characteristic symptoms of chlorotic or necrotic spindle and diamond-shaped lesions on the leaves and scapes. Symptomatic plants were found throughout the field and disease incidence was estimated at 80%. Leaf and scape samples were tested for the presence of IYSV and two other tospoviruses, Tomato spotted wilt virus (TSWV) and Impatiens necrotic spot virus (INSV), using commercial double-antibody sandwich (DAS)-ELISA diagnostic kits (Loewe Biochemica, Sauerlach, Germany). All samples tested negative for TSWV and INSV. IYSV was detected serologically in 26 of 34 onion samples. To determine an experimental host range, samples of IYSV-infected onion plants were homogenized in chilled 0.05 M phosphate buffer pH 7 containing 1 mM Na-EDTA, 5 mM Na-DIECA, and 5 mM Na-thioglycolate (2), and host plants were inoculated with the sap. Mechanical transmission of the virus occurred rarely. All inoculated test plants were assayed by DAS-ELISA and only four species tested positive for IYSV, but not in all replications. Inoculated Chenopodium quinoa developed local chlorotic lesions, Nicotiana tabacum cvs. Samsun and Prilep showed mild mosaic, while infected N. benthamiana were symptomless. For further confirmation of IYSV, conventional reverse transcription (RT)-PCR was performed on extracts made from symptomatic onion leaf material and from the ELISA-positive symptomless leaves of N. benthamiana. Total RNAs were extracted with an RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and RT-PCR was carried out with the OneStep RT PCR Kit (Qiagen) following the manufacturer's instructions. The primer pair, IYSV56U/IYSV917L, covering the entire nucleocapsid (NC) gene was used for both amplification and sequencing (1). A product of the correct predicted size (896 bp) was obtained from each of the plants assayed, and that derived from isolate 605-SRB was purified (QUIAqick PCR Purification Kit, Qiagen) and sequenced (GenBank Accession No. EU586203). BLAST analyses revealed 86 to 97% sequence identity with the NC gene from all other IYSV. The highest identity (97%) was with leek and onion isolates (GenBank Accession Nos. EF427447 and EF19888) from Spain. To our knowledge, this is the first report of IYSV infection of onion seed crop in Serbia. Thorough inspections and subsequent testing would be needed to establish the distribution and incidence of IYSV in Serbia. References: (1) I. Robène-Soustrade et al. Plant Pathol. 55:288, 2006. (2) P. Roggero et al. Plant Dis. 86:950, 2002. (3) C. Sansford and J. Woodhall. Pest Risk Analysis for Iris Yellow Spot Virus. Online publication. Central Science Laboratory, Sand Hutton, UK, 2007.


2010 ◽  
Vol 11 (1) ◽  
pp. 11 ◽  
Author(s):  
Howard F. Schwartz ◽  
David H. Gent ◽  
Scott M. Fichtner ◽  
Rajiv Khosla ◽  
Linda A. Mahaffey ◽  
...  

Iris yellow spot virus and its onion thrips vector (Thrips tabaci) are yield limiting pests of onion in the western United States. This two-year project investigated the relationship of iris yellow spot to thrips populations, soil properties, and grower management practices in six onion fields during 2005 and 2006 in Colorado. Thrips density (average number of thrips per plant per day) was negatively associated with soil pH (r = -0.61). The incidence of iris yellow spot at harvest was positively associated with organic matter, zinc, potassium, percent sodium, percent hydrogen, copper, iron, and soil pH. Thrips-days had a clear non-linear association with disease incidence at harvest. Onion plant population was positively associated with levels of iron, phosphorus, potassium, and zinc; and negatively associated with calcium, salts, percent potassium, and cation exchange capacity (CEC). Marketable (medium or larger sized bulbs) yield was negatively associated with phosphorus and percent potassium, and positively associated with salts, calcium, and CEC. Results from this project could contribute to the development of a risk index to predict potential risk from Iris yellow spot virus and its onion thrips vector. Accepted for publication 6 July 2010. Published 20 August 2010.


Plant Disease ◽  
2010 ◽  
Vol 94 (12) ◽  
pp. 1508-1508 ◽  
Author(s):  
D. M. Sether ◽  
W. B. Borth ◽  
R. S. Shimabuku ◽  
H. R. Pappu ◽  
M. J. Melzer ◽  
...  

Onion (Allium spp.) production in Hawaii is mostly comprised of green onion and the locally prized sweet bulb onions (Allium cepa L.) that include short- and medium-day cultivars. Iris yellow spot virus (IYSV; family Bunyaviridae, genus Tospovirus) is an important constraint to bulb and seed onion production in many onion-growing regions of the continental United States and the world (3). In June 2010, straw-colored, diamond-shaped lesions with occasional green islands were observed on leaves of sweet onion ‘Linda Vista’ in an insecticide trial on Maui for onion thrips (Thrips tabaci) control. Collapse and lodging occurred when lesions on leaves were severe. Seven bulbs with green leaves exhibiting lesions were collected from this onion field in the Pulehu Region of the lower Kula District on Maui. Leaf samples that included a lesion or were within 1 cm of a lesion were found to be positive in indirect ELISA with IYSV-specific polyclonal antisera (2). A405nm readings after 1 h ranged from 0.263 to 2.067 for positive samples and 0.055 to 0.073 for healthy onion controls. Four samples that were prepared from leaf tissue several centimeters away from a lesion tested negative in ELISA. Such uneven virus distribution in the plants has been previously reported (4). In July 2010, symptomatic sweet onion from a commercial farm in upper Kula, Maui at the 1,060 to 1,220 m (3,500 to 4,000 foot) elevation tested positive for IYSV by ELISA. Green onion samples collected from a commercial farm in Omaopio, Maui, located approximately 0.8 km (0.5 mile) north of Pulehu, have tested negative, suggesting distribution may be limited at this time. RNA was isolated from leaf tissue from the seven ‘Linda Vista’ sweet onions collected from the Maui insecticide trial. Reverse transcription (RT)-PCR with forward and complementary primers 5′-CTCTTAAACACATTTAACAAGCAC-3′ and 5′-TAAAACAAACATTCAAACAA-3′ flanking the nucleocapsid (N) gene encoded by the small RNA of IYSV was conducted as previously described (1). Amplicons approximately 1.1 kb long were obtained from all seven symptomatic onion samples but not from healthy samples or water controls. Sequencing of selected amplicons confirmed IYSV infection. Three sequence variants (GenBank Accession Nos. HM776014–HM776016) were identified from two RT-PCR reactions. Phylogenetic analyses of the three sequence variants with the neighbor-joining procedure available through NCBI-BLASTn Tree View showed that the highest nucleotide identities of 97 to 98% were shared with IYSV isolates from New Zealand (EU477515), Nevada (FJ713699), and northern California (FJ713700). Phylogenetic analyses with the N-gene showed the sequences from Hawaii are most closely related to isolates from the western United States, Texas, and New Zealand. To date, to our knowledge, IYSV has not been detected on the islands of Kauai, Oahu, Molokai, or Hawaii. The distribution and economic consequences of this disease to Hawaii's onion production are under investigation. References: (1) H. R. Pappu et al. Arch Virol. 151:1015, 2006. (2) H. R. Pappu et al. Plant Dis. 92:588, 2008. (3) H. R. Pappu et al. Virus Res. 141:219, 2009. (4) T. N. Smith et al. Plant Dis. 90:729, 2006.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 430-430 ◽  
Author(s):  
C. K. Evans ◽  
S. Bag ◽  
E. Frank ◽  
J. R. Reeve ◽  
C. Ransom ◽  
...  

Iris yellow spot virus (IYSV; family Bunyaviridae, genus Tospovirus) continues to be an economically important pathogen affecting onion bulb and seed production in several parts of the world and the United States (1). Several weeds were reported naturally infected with IYSV (1,2,4). Leaves of Atriplex micrantha Ledeb. (synonym A. heterosperma Bunge) were collected from naturally occurring plants in a weed trial conducted in commercial onions grown in Box Elder County, UT on 24 September 2008. Leaves displayed a range of symptoms including spotting, chlorosis, and necrosis. Symptomatic leaves were preferentially selected for subsequent diagnostic analyses. Samples were positive for IYSV when tested by double-antibody sandwich-ELISA using a commercially available kit (Agdia Inc., Elkhart, IN). For further confirmation, total nucleic acid extracts from the symptomatic parts of the leaves were prepared and tested for the presence of IYSV by reverse transcription-PCR with primers specific to the nucleocapsid (N) gene coded by the small (S)-RNA of IYSV. The forward and reverse primer pair, 5′-TCAGAAATCGAGAAACTT-3′ and 5′-CACCAATGTCTTCAACAATCTT-3′, respectively, amplifies a 751-nt fragment of the N gene (3). An amplicon of expected size was obtained, cloned, and sequenced. The nucleotide sequence analysis and comparison with known IYSV S-RNA sequences showed that the sequence of the amplicon from A. micrantha (GenBank Accession No. FJ493541) shared more than 84% nt sequence identity with the corresponding region of IYSV isolates available in GenBank, confirming the IYSV infection of the new host weed. The highest sequence identity (98%) was with an IYSV isolate from Jefferson County, OR (GenBank Accession No. DQ233479). To our knowledge, this is the first report of IYSV infection of A. micrantha under natural conditions. The role of A. micrantha and other weeds in IYSV epidemiology needs further investigation. References: (1) D. Gent et al. Plant Dis. 90:1468, 2006. (2) C. Nischwitz et al. Plant Dis. 91:1518, 2007. (3) H. R. Pappu et al. Arch. Virol. 151:1015, 2006. (4) R. Sampangi et al. Plant Dis. 91:1683, 2007.


Plant Disease ◽  
2011 ◽  
Vol 95 (10) ◽  
pp. 1319-1319 ◽  
Author(s):  
C. S. Cramer ◽  
S. Bag ◽  
H. F. Schwartz ◽  
H. R. Pappu

Iris yellow spot virus (IYSV; family Bunyaviridae, genus Tospovirus) is becoming an increasingly important constraint to the production of bulb and seed onions (Allium cepa L.) in many onion-growing regions of the continental United States and the world (4). During an evaluation of onion germplasm for susceptibility to IYSV, six other Allium species (A. altaicum, A. galanthum, A. roylei, A. schoenoprasum, A. tuberosum, and A. vavilovii) were also evaluated under natural field conditions. In July 2010, symptoms suggestive of IYSV infection (straw-colored necrotic lesions) were observed on leaves of these Allium spp. in experimental plots in Las Cruces, NM. IYSV was detected in symptomatic leaves of A. altaicum, A. vavilovii, A. tuberosum, A. schoenoprasum and A. roylei with a commercially available ELISA kit (Agdia Inc., Elkhart, IN). IYSV infection was confirmed by reverse transcription (RT)-PCR with forward and complementary primers 5′-CTCTTAAACACATTTAACAAGCAC-3′ and 5′-TAAAACAAACATTCAAACAA-3′ flanking the nucleocapsid (N) gene encoded by the small RNA of IYSV as previously described (1,3). Amplicons, approximately 1.1 kb long, were obtained from all symptomatic Allium spp. samples but not from healthy samples or water controls. Sequencing of selected amplicons confirmed IYSV infection. The highest nucleotide identity of 98% was shared with IYSV isolates from Japan (GenBank Accession No. AB180921). A. altaicum, A. vavilovii, and A. pskemense were previously reported from Washington to be susceptible to IYSV (2). Current findings expand the list of Allium spp. that are susceptible to IYSV and underscores the need for continued screening of other members of the genus to find sources of resistance to IYSV. References: (1) H. R. Pappu et al. Arch. Virol. 151:1015, 2006. (2) H. R. Pappu et al. Plant Dis. 90:378, 2006. (3) H. R. Pappu et al. Plant Dis. 92:588, 2008. (4) H. R. Pappu et al. Virus Res. 141:219, 2009.


Plant Disease ◽  
2007 ◽  
Vol 91 (1) ◽  
pp. 113-113 ◽  
Author(s):  
H. F. Schwartz ◽  
K. Otto ◽  
H. R. Pappu

Iris yellow spot virus (IYSV; family Bunyaviridae, genus Tospovirus) has a wide host range, with onion (Allium cepa L.) being one of the most economically important hosts. IYSV has been widely reported from this species throughout most onion-production regions of the United States and many areas of the world in recent years. A relative of onion, leek (Allium porrum L.), has been reported to be a host of IYSV in countries such as the Netherlands, Reunion Island, and Australia (1,4). A related tospovirus, Tomato spotted wilt virus (TSWV), was recently reported causing necrotic lesions and extended bleaching of leaf tips of leek in Georgia (2). In September of 2006, disease symptoms suspected to be caused by IYSV were observed on central and outer leaves of plants in a 2.6-ha section of commercial leeks being grown from seed (cvs. Tadorna and King Richard). The leek plants were adjacent to a 3.1-ha section of seeded onion (cv. Exacta) that had been harvested 2 weeks earlier. Twenty-five to thirty percent of unharvested onion plants next to the leek section also exhibited IYSV-type disease symptoms generally on the central leaves. Both Allium spp. were seeded 5 months earlier and grown under certified organic, pivot-irrigated conditions in Larimer County in northern Colorado. Disease symptoms on leek and onion leaves appeared as dry, white-to-straw-colored, spindle- or diamond-shaped lesions that ranged in size from 5 to 10 × 25 to 50 mm or larger depending on lesion age. Lesion centers, especially on leek, often had green centers with concentric rings of alternating green and straw-colored tissue. Green tissue near necrotic lesions of a single symptomatic leaf from 10 plants each of leek and onion was sampled and analyzed using a double-antibody sandwich (DAS)-ELISA (Agdia, Inc., Elkhart, IN). Five of ten leek and nine of ten onion samples were positive for IYSV. Using reverse transcription (RT)-PCR and primers specific to the small RNA of IYSV (5′-TAA AAC AAA CAT TCA AAC AA-3′ and 5′-CTC TTA AAC ACA TTT AAC AAG CAC-3′), the complete nucleocapsid (N) gene was amplified from symptomatic leek plants and then sequenced (3). Comparisons with IYSV N gene sequences available in the GenBank confirmed the identity of the virus as IYSV. Leek samples were negative for TSWV when tested by RT-PCR with TSWV-specific primers. In addition, three specimens of the presumed thrips vector recovered from five IYSV-infected leek plants were identified as Thrips tabaci (L. A. Mahaffey and W. S. Cranshaw, personal communication). Earlier in the season, T. tabaci was observed in the nearby planting of onion that also exhibited IYSV in September. To our knowledge, this is the first report of natural infection of commercial leek with IYSV in the United States. The incidence of plants (25 to 30%) with foliar lesions on multiple leaves and stunting of 5% of infected plants in both leek cultivars suggests that IYSV could seriously reduce leek stem development and marketability. References: (1) I. Cortes et al. Phytopathology 88:1276, 1998. (2) C. Nischwitz et al. Plant Dis. 90:525, 2006. (3) H. R. Pappu et al. Arch. Virol. 151:1015, 2006. (4) T. N. Smith et al. Plant Dis. 90:729, 2006.


Plant Disease ◽  
2009 ◽  
Vol 93 (6) ◽  
pp. 670-670 ◽  
Author(s):  
C. K. Evans ◽  
S. Bag ◽  
E. Frank ◽  
J. Reeve ◽  
C. Ransom ◽  
...  

Iris yellow spot virus (IYSV; family Bunyaviridae, genus Tospovirus) is a serious virus pathogen in onion bulb and seed crops in the United States and several parts of the world (1). The virus is exclusively transmitted by onion thrips (Thrips tabaci). Besides onion and other susceptible crops such as garlic, leek, chives, and several ornamentals, weeds could be serving as potential reservoir sources of virus inoculum. There are reports of several weeds found naturally infected with IYSV (1,2,4). However, there is no report of IYSV infection of a grass species. Leaves of green foxtail (Setaria viridis (L.) Beauv.) were collected from two naturally occurring plants approximately 30 m apart in a weed trial conducted in commercial onions grown in Box Elder County, UT on 24 September 2008. Notes of IYSV symptoms on green foxtail were made only on the two grass plants sampled. Density of green foxtail in the weed trial was low and was not recorded. Leaves on both plants displayed a range of symptoms that included streaking, purpling, and chlorotic and necrotic lesions along leaf margins oriented along the axis of longitudinal venation. Samples were positive for IYSV by double-antibody sandwich-ELISA with a commercially available kit (Agdia Inc., Elkhart, IN). ELISA values of the grass samples were 2.64 and 2.23 for each plant sampled. Negative and positive control readings were 0.24 and 4.33, respectively. All absorbance readings were made at 405 nm. To provide a contrast of the grass data in context to the onion field where the weed trial was located, final visual assessments of onions in the field were made on 4 September 2009. Approximately 300 onion plants were assessed for incidence and severity of disease. Incidence of the disease among onions was 100% and the severity of iris yellow spot on leaves was 20 lesions per leaf. The average ELISA value over 30 individual onions arbitrarily sampled from the field on the same day was 3.50, and the ELISA values among the samples ranged from 1.37 to 4.38. The negative and positive controls were 0.19 and 4.40, respectively. To further verify the presence of IYSV in the grass specimen, reverse transcription-PCR was performed on total nucleic acid extracts obtained from the symptomatic parts of the leaves. Primers specific to the nucleocapsid (N) gene coded by the small (S)-RNA of IYSV were used (3). The forward and reverse primer pairs, 5′-TCAGAAATCGAGAAACTT-3′ and 5′-CACCAATGTCTTCAACAATCTT-3′, respectively, amplify a 751-nt fragment of the N gene (3). An amplicon of expected size was obtained, cloned, and sequenced. The nucleotide sequence analysis and comparison with known IYSV S-RNA sequences showed that the amplicon from foxtail (GenBank Accession No. FJ652594) samples had the highest nucleotide sequence identity (98%) with the corresponding region of an IYSV isolate from Jefferson County, OR (GenBank Accession No. DQ233479). To our knowledge, this is the first report of natural infection of a grass species by IYSV and the first report of a Tospovirus infecting a grass species. The data suggests grasses may serve as a new host reservoir for IYSV. The increasing number of weed hosts of IYSV warrants further study on the role of these weeds as hosts for onion thrips and in IYSV epidemiology. References: (1) D. Gent et al. Plant Dis. 90:1468, 2006. (2) C. Nischwitz et al. Plant Dis. 91:1518, 2007. (3) H. R. Pappu et al. Arch. Virol. 151:1015, 2006. (4) R. Sampangi et al. Plant Dis. 91:1683, 2007.


Sign in / Sign up

Export Citation Format

Share Document