Temporal analysis of effective population size and mating system in a social wasp

2021 ◽  
Author(s):  
Carl J Dyson ◽  
Olivia L Piscano ◽  
Rebecca M Durham ◽  
Veronica J Thompson ◽  
Catherine H Johnson ◽  
...  

Abstract Highly social species are successful because they cooperate in obligately integrated societies. We examined temporal genetic variation in the eusocial wasp Vespula maculifrons in order to gain a greater understanding of evolution in highly social taxa. First, we wished to test if effective population sizes of eusocial species were relatively low due to the reproductive division of labor that characterizes eusocial taxa. We thus estimated the effective population size of V. maculifrons by examining temporal changes in population allele frequencies. We sampled the genetic composition of a V. maculifrons population at three separate time points spanning a 13-year period. We found that effective population size ranged in the hundreds of individuals, which is similar to estimates in other, non-eusocial taxa. Second, we estimated levels of polyandry in V. maculifrons in different years in order to determine if queen mating system varied over time. We found no significant change in the number or skew of males mated to queens. In addition, mating skew was not significant within V. maculifrons colonies. Therefore, our data suggest that queen mate number may be subject to stabilizing selection in this taxon. Overall, our study provides novel insight into the selective processes operating in eusocial species by analyzing temporal genetic changes within populations.

2008 ◽  
Vol 10 (2) ◽  
pp. 329-346 ◽  
Author(s):  
Kathrin Theissinger ◽  
N. N. FitzSimmons ◽  
C. J. Limpus ◽  
C. J. Parmenter ◽  
A. D. Phillott

2017 ◽  
Vol 109 (3) ◽  
pp. 264-271 ◽  
Author(s):  
Ellida de Aguiar Silvestre ◽  
Kaiser Dias Schwarcz ◽  
Carolina Grando ◽  
Jaqueline Bueno de Campos ◽  
Patricia Sanae Sujii ◽  
...  

1987 ◽  
Vol 17 (5) ◽  
pp. 379-382 ◽  
Author(s):  
J. W. Barrett ◽  
P. Knowles ◽  
W. M. Cheliak

Isozyme markers were used to study the mating system, estimate the effective population size, and determine the effective gene pool composition in a black spruce clonal seed orchard. Ten seeds per family were electrophoretically analyzed by embryo and megagametophytic pairs to determine their allelic and genotypic frequencies at five polymorphic loci. Single-locus estimates of outcrossing ranged from 0.682 to 1.087 (mean, 0.942), while the multilocus estimate was 0.837. The variance effective population size was calculated to be 17 individuals, comprising 13 receptive females and 4 effective males. Evidence of gene pool heterogeneity suggested a small, nonrandomly mating population within the clonal seed orchard.


Sign in / Sign up

Export Citation Format

Share Document