biased gene conversion
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 27)

H-INDEX

31
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Justin Wilcox ◽  
Barbara Arca-Ruibal ◽  
Jaime Samour ◽  
Victor Mateuta ◽  
Youssef Idaghdour ◽  
...  

Falcons are diverse birds of cultural and economic importance. They have undergone major lineage specific chromosomal rearrangements, resulting in greatly-reduced chromosome counts relative to other birds. Here, we use 10X Genomics linked reads to provide new high-contiguity genomes for two gyrfalcons, a saker falcon, a lanner falcon, three subspecies of peregrine falcons, and the common kestrel. Assisted by a transcriptome sequenced from 22 gyrfalcon tissues, we annotate these genomes for a variety of genomic features, estimate historical demography, and then investigate genomic equilibrium in the context of falcon-specific chromosomal rearrangements. We find that falcon genomes are not in AT-GC equilibrium with a bias in mutations towards higher AT content; this bias is predominantly driven by, but not dependent on, hypermutability of CpG sites. Small indels and large structural variants were also biased towards insertions rather than deletions. Patterns of disequilibrium were linked to chromosomal rearrangements: falcons have lost GC content in regions that have fused to larger chromosomes from microchromosomes and gained GC content in regions of macrochromosomes that have translocated to microchromosomes. Inserted bases have accumulated on regions ancestrally belonging to microchromosomes, consistent with insertion-biased gene conversion. We also find an excess of interspersed repeats on regions of microchromosomes that have fused to macrochromosomes. Our results reveal that falcon genomes are in a state of flux. They further suggest that many of the key differences between microchromosomes and macrochromosomes are driven by differences in chromosome size, and indicate a clear role for recombination and biased gene conversion in determining genomic equilibrium.


2021 ◽  
Author(s):  
Alexander L Cope ◽  
Premal Shah

Patterns of non-uniform usage of synonymous codons (codon bias) varies across genes in an organism and across species from all domains of life. The bias in codon usage is due to a combination of both non-adaptive (e.g. mutation biases) and adaptive (e.g. natural selection for translation efficiency/accuracy) evolutionary forces. Most population genetics models quantify the effects of mutation bias and selection on shaping codon usage patterns assuming a uniform mutation bias across the genome. However, mutation biases can vary both along and across chromosomes due to processes such as biased gene conversion, potentially obfuscating signals of translational selection. Moreover, estimates of variation in genomic mutation biases are often lacking for non-model organisms. Here, we combine an unsupervised learning method with a population genetics model of synonymous codon bias evolution to assess the impact of intragenomic variation in mutation bias on the strength and direction of natural selection on synonymous codon usage across 49 Saccharomycotina budding yeasts. We find that in the absence of a priori information, unsupervised learning approaches can be used to identify regions evolving under different mutation biases. We find that the impact of intragenomic variation in mutation bias varies widely, even among closely-related species. We show that the overall strength and direction of selection on codon usage can be underestimated by failing to account for intragenomic variation in mutation biases. Interestingly, genes falling into clusters identified by machine learning are also often physically clustered across chromosomes, consistent with processes such as biased gene conversion. Our results indicate the need for more nuanced models of sequence evolution that systematically incorporate the effects of variable mutation biases on codon frequencies.


2021 ◽  
Author(s):  
Fantin Carpentier ◽  
Ricardo Rodriguez De La Vega ◽  
Michael H. Perlin ◽  
Margaret Wallen ◽  
Michael Hood ◽  
...  

Recombination is beneficial over the long term, allowing more effective selection. Despite long-term advantages of recombination, local recombination suppression is known to evolve and lead to genomic degeneration, in particular on sex and mating-type chromosomes, sometimes linked to severe genetic diseases. Here, we investigated the tempo of degeneration in non-recombining regions, i.e., the function curve for the accumulation of deleterious mutations over time, taking advantage of 17 independent events of large recombination suppression identified on mating-type chromosomes of anther-smut fungi, including five newly identified in the present study. Using high-quality genomes assemblies of alternative mating types of 13 Microbotryum species, we estimated the degeneration levels in terms of accumulation of non-optimal codons and non-synonymous substitutions in non-recombining regions. We found a reduced frequency of optimal codons in the non-recombining regions on mating-type chromosomes compared to autosomes. We showed that the lower frequency of optimal codons in non-recombining regions was not due to less frequent GC-biased gene conversion or lower ancestral expression levels compared to recombining regions. We estimated that the frequency of optimal codon usage decreased linearly at a rate of 0.989 per My. The non-synonymous over synonymous substitution rate (dN/dS) increased rapidly after recombination suppression and then reached a plateau. To our knowledge this is the first study to disentangle effects of reduced selection efficacy from GC-biased gene conversion in the evolution of optimal codon usage to quantify the tempo of degeneration in non-recombining regions, leveraging on multiple independent recombination suppression events. Understanding the tempo of degeneration is important for our knowledge on genomic evolution, on the origin of genetic diseases and on the maintenance of regions without recombination.


Author(s):  
Ben Jackson ◽  
Brian Charlesworth

Abstract Population genetics studies often make use of a class of nucleotide site free from selective pressures, in order to make inferences about population size changes or natural selection at other sites. If such neutral sites can be identified, they offer the opportunity to avoid any confounding effects of selection. Here we investigate evolution at putatively neutrally evolving short intronic sites in natural populations of Drosophila melanogaster and D. simulans, in order to understand the properties of spontaneous mutations and the extent of GC-biased gene conversion in these species. Use of data on the genetics of natural populations is advantageous because it integrates information from large numbers of individuals over long timescales. In agreement with direct evidence from observations of spontaneous mutations in Drosophila, we find a bias in the spectrum of mutations towards AT basepairs. In addition, we find that this bias is stronger in the D. melanogaster lineage than in the D. simulans lineage. The evidence for GC-biased gene conversion in Drosophila has been equivocal. Here we provide evidence for a weak force favoring GC in both species, which is correlated with the GC content of introns and is stronger in D. simulans than in D. melanogaster.


Author(s):  
Emily K Jackson ◽  
Daniel W Bellott ◽  
Helen Skaletsky ◽  
David C Page

Abstract Gene conversion is GC-biased across a wide range of taxa. Large palindromes on mammalian sex chromosomes undergo frequent gene conversion that maintains arm-to-arm sequence identity greater than 99%, which may increase their susceptibility to the effects of GC-biased gene conversion. Here, we demonstrate a striking history of GC-biased gene conversion in 12 palindromes conserved on the X chromosomes of human, chimpanzee, and rhesus macaque. Primate X-chromosome palindrome arms have significantly higher GC content than flanking single-copy sequences. Nucleotide replacements that occurred in human and chimpanzee palindrome arms over the past 7 million years are one-and-a-half times as GC-rich as the ancestral bases they replaced. Using simulations, we show that our observed pattern of nucleotide replacements is consistent with GC-biased gene conversion with a magnitude of 70%, similar to previously reported values based on analyses of human meioses. However, GC-biased gene conversion since the divergence of human and rhesus macaque explains only a fraction of the observed difference in GC content between palindrome arms and flanking sequence, suggesting that palindromes are older than 29 million years and/or had elevated GC content at the time of their formation. This work supports a greater than 2:1 preference for GC bases over AT bases during gene conversion, and demonstrates that the evolution and composition of mammalian sex chromosome palindromes is strongly influenced by GC-biased gene conversion.


Genetics ◽  
2021 ◽  
Author(s):  
Juraj Bergman ◽  
Mikkel Heide Schierup

Abstract The nucleotide composition of the genome is a balance between origin and fixation rates of different mutations. For example, it is well-known that transitions occur more frequently than transversions, particularly at CpG sites. Differences in fixation rates of mutation types are less explored. Specifically, recombination-associated GC-biased gene conversion (gBGC) may differentially impact GC-changing mutations, due to differences in their genomic distributions and efficiency of mismatch repair mechanisms. Given that recombination evolves rapidly across species, we explore gBGC of different mutation types across human populations and great ape species. We report a stronger correlation between segregating GC frequency and recombination for transitions than for transversions. Notably, CpG transitions are most strongly affected by gBGC in humans and chimpanzees. We show that the overall strength of gBGC is generally correlated with effective population sizes in humans, with some notable exceptions, such as a stronger effect of gBGC on non-CpG transitions in populations of European descent. Furthermore, species of the Gorilla and Pongo genus have a greatly reduced gBGC effect on CpG sites. We also study the dependence of gBGC dynamics on flanking nucleotides and show that some mutation types evolve in opposition to the gBGC expectation, likely due to hypermutability of specific nucleotide contexts. Our results highlight the importance of different gBGC dynamics experienced by GC-changing mutations and their impact on nucleotide composition evolution.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0244163
Author(s):  
Bert Ely

In every kingdom of life, GC->AT transitions occur more frequently than any other type of mutation due to the spontaneous deamination of cytidine. In eukaryotic genomes, this slow loss of GC base pairs is counteracted by biased gene conversion which increases genomic GC content as part of the recombination process. However, this type of biased gene conversion has not been observed in bacterial genomes, so we hypothesized that GC->AT transitions cause a reduction of genomic GC content in prokaryotic genomes on an evolutionary time scale. To test this hypothesis, we used a phylogenetic approach to analyze triplets of closely related genomes representing a wide range of the bacterial kingdom. The resulting data indicate that genomic GC content is drifting downward in bacterial genomes where GC base pairs comprise 40% or more of the total genome. In contrast, genomes containing less than 40% GC base pairs have fewer opportunities for GC->AT transitions to occur so genomic GC content is relatively stable or actually increasing. It should be noted that this observed change in genomic GC content is the net change in shared parts of the genome and does not apply to parts of the genome that have been lost or acquired since the genomes being compared shared common ancestor. However, a more detailed analysis of two Caulobacter genomes revealed that the acquisition of mobile elements by the two genomes actually reduced the total genomic GC content as well.


Sign in / Sign up

Export Citation Format

Share Document