scholarly journals Blood-Feeding Behavior of Vesicular Stomatitis Virus Infected Culicoides sonorensis (Diptera: Ceratopogonidae)

2008 ◽  
Vol 45 (5) ◽  
pp. 921-926 ◽  
Author(s):  
Kristine E. Bennett ◽  
Jessica E. Hopper ◽  
Melissa A. Stuart ◽  
Mark West ◽  
Barbara S. Drolet
2008 ◽  
Vol 45 (5) ◽  
pp. 921-926 ◽  
Author(s):  
Kristine E. Bennett ◽  
Jessica E. Hopper ◽  
Melissa A. Stuart ◽  
Mark West ◽  
Barbara S. Drolet

Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 816
Author(s):  
Paula Rozo-Lopez ◽  
Berlin Londono-Renteria ◽  
Barbara S. Drolet

Culicoides sonorensis biting midges are biological vectors of vesicular stomatitis virus (VSV) in the U.S. Yet, little is known regarding the amount of ingested virus required to infect midges, nor how their feeding behavior or age affects viral replication and vector competence. We determined the minimum infectious dose of VSV-New Jersey for C. sonorensis midges and examined the effects of multiple blood-feeding cycles and age at the time of virus acquisition on infection dynamics. A minimum dose of 3.2 logs of virus/mL of blood resulted in midgut infections, and 5.2 logs/mL resulted in a disseminated infection to salivary glands. For blood-feeding behavior studies, ingestion of one or two non-infectious blood meals (BM) after a VSV infectious blood meal (VSV-BM) resulted in higher whole-body virus titers than midges receiving only the single infectious VSV-BM. Interestingly, this infection enhancement was not seen when a non-infectious BM preceded the infectious VSV-BM. Lastly, increased midge age at the time of infection correlated to increased whole-body virus titers. This research highlights the epidemiological implications of infectious doses, vector feeding behaviors, and vector age on VSV infection dynamics to estimate the risk of transmission by Culicoides midges more precisely.


Pathogens ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 316 ◽  
Author(s):  
Paula Rozo-Lopez ◽  
Berlin Londono-Renteria ◽  
Barbara S. Drolet

Culicoides sonorensis biting midges are well-known agricultural pests and transmission vectors of arboviruses such as vesicular stomatitis virus (VSV). The epidemiology of VSV is complex and encompasses a broad range of vertebrate hosts, multiple routes of transmission, and diverse vector species. In temperate regions, viruses can overwinter in the absence of infected animals through unknown mechanisms, to reoccur the next year. Non-conventional routes for VSV vector transmission may help explain viral maintenance in midge populations during inter-epidemic periods and times of adverse conditions for bite transmission. In this study, we examined whether VSV could be transmitted venereally between male and female midges. Our results showed that VSV-infected females could venereally transmit virus to uninfected naïve males at a rate as high as 76.3% (RT-qPCR), 31.6% (virus isolation) during the third gonotrophic cycle. Additionally, VSV-infected males could venereally transmit virus to uninfected naïve females at a rate as high as 76.6% (RT-qPCR), 49.2% (virus isolation). Immunofluorescent staining of micro-dissected reproductive organs, immunochemical staining of midge histological sections, examination of internal reproductive organ morphology, and observations of mating behaviors were used to determine relevant anatomical sites for virus location and to hypothesize the potential mechanism for VSV transmission in C. sonorensis midges through copulation.


2000 ◽  
Vol 37 (5) ◽  
pp. 784-786 ◽  
Author(s):  
Richard A. Nunamaker ◽  
Adalberto A. Peréz De León ◽  
Corey L. Campbell ◽  
Scott M. Lonning

2006 ◽  
Vol 175 (4S) ◽  
pp. 202-202
Author(s):  
Sherwin Zargaroff ◽  
Yuancheng Wang ◽  
Xiayong Zheng ◽  
Jian Pu ◽  
Savio L. Woo ◽  
...  

1999 ◽  
Vol 69 (3) ◽  
pp. 353 ◽  
Author(s):  
Anne C. E. Moor ◽  
Angeline E. Wagenaars-van Gompel ◽  
Ralph C. A. Hermanns ◽  
Jannes van der Meulen ◽  
Jolanda Smit ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document