scholarly journals Weight-of-Evidence for Forensic DNA Profiles, by David J. Balding: John Wiley and Sons, Ltd., 2005; 198 pp.

2005 ◽  
Vol 4 (3) ◽  
pp. 191-193
Author(s):  
J. S. Buckleton
Technometrics ◽  
2008 ◽  
Vol 50 (3) ◽  
pp. 407-408
Author(s):  
Madhuri S Mulekar

Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1112
Author(s):  
Hashom Mohd Hakim ◽  
Hussein Omar Khan ◽  
Japareng Lalung ◽  
Bryan Raveen Nelson ◽  
Geoffrey Keith Chambers ◽  
...  

Science and technology are extensively used in criminal investigation. From the mid- to late-1980s, one of the scientific discoveries that has had a particularly remarkable impact on this field has been the use of highly variable DNA sequence regions (minisatellites) in the human genome for individual identification. The technique was initially referred to as DNA fingerprinting, but is now more widely referred to as DNA profiling. Since then, many new developments have occurred within this area of science. These include the introduction of new genetic markers (microsatellites also known as short tandem repeats/STRs), the use of the polymerase chain reaction for target amplification, the development of DNA databases (databanking), and the advancement and/or improvement of genotyping protocols and technologies. In 2019, we described the progress of DNA profiling and DNA databanking in Malaysia for the first time. This report included information on DNA analysis regulations and legislation, STR genotyping protocols, database management, and accreditation status. Here, we provide an update on the performance of our DNA databank (numbers of DNA profiles and hits) plus the technical issues associated with correctly assigning the weight of evidence for DNA profiles in an ethnically diverse population, and the potential application of rapid DNA testing in the country. A total of 116,534 DNA profiles were obtained and stored in the Forensic DNA Databank of Malaysia (FDDM) by 2019, having increased from 70,570 in 2017. The number of hits increased by more than three-fold in just two years, where 17 and 69 hits between the DNA profiles stored in the FDDM and those from crime scenes, suspects, detainees, drug users, convicts, missing persons, or volunteers were recorded in 2017 and 2019, respectively. Forensic DNA analysis and databanking are thus progressing well in Malaysia and have already contributed to many criminal investigations. However, several other issues are discussed here, including the need for STR population data for uncharacterized population groups, and pilot trials for adopting rapid DNA profiling technology. These aspects should be considered by policy makers and law enforcement agencies in order to increase the reliability and efficiency of DNA profiling in criminal cases and in kinship analysis in Malaysia.


Author(s):  
David J. Balding ◽  
Christopher D. Steele

Genetics ◽  
2000 ◽  
Vol 155 (4) ◽  
pp. 1973-1980
Author(s):  
Jinko Graham ◽  
James Curran ◽  
B S Weir

Abstract Modern forensic DNA profiles are constructed using microsatellites, short tandem repeats of 2–5 bases. In the absence of genetic data on a crime-specific subpopulation, one tool for evaluating profile evidence is the match probability. The match probability is the conditional probability that a random person would have the profile of interest given that the suspect has it and that these people are different members of the same subpopulation. One issue in evaluating the match probability is population differentiation, which can induce coancestry among subpopulation members. Forensic assessments that ignore coancestry typically overstate the strength of evidence against the suspect. Theory has been developed to account for coancestry; assumptions include a steady-state population and a mutation model in which the allelic state after a mutation event is independent of the prior state. Under these assumptions, the joint allelic probabilities within a subpopulation may be approximated by the moments of a Dirichlet distribution. We investigate the adequacy of this approximation for profiled loci that mutate according to a generalized stepwise model. Simulations suggest that the Dirichlet theory can still overstate the evidence against a suspect with a common microsatellite genotype. However, Dirichlet-based estimators were less biased than the product-rule estimator, which ignores coancestry.


BioTechniques ◽  
2009 ◽  
Vol 47 (5) ◽  
pp. 951-958 ◽  
Author(s):  
Johannes Hedman ◽  
Anders Nordgaard ◽  
Birgitta Rasmusson ◽  
Ricky Ansell ◽  
Peter Rådström

2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Keith Inman ◽  
Norah Rudin ◽  
Ken Cheng ◽  
Chris Robinson ◽  
Adam Kirschner ◽  
...  

2005 ◽  
Vol 50 (5) ◽  
pp. 1-1
Author(s):  
Peter Gill ◽  
John Buckleton
Keyword(s):  

2009 ◽  
Vol 2 (1) ◽  
pp. 462-463 ◽  
Author(s):  
F. Van Nieuwerburgh ◽  
E. Goetghebeur ◽  
M. Vandewoestyne ◽  
D. Deforce

Sign in / Sign up

Export Citation Format

Share Document