scholarly journals Surface dynamics, equilibrium points and individual lobes of the Kuiper Belt object (486958) Arrokoth

2020 ◽  
Vol 496 (4) ◽  
pp. 4154-4173 ◽  
Author(s):  
A Amarante ◽  
O C Winter

ABSTRACT The New Horizons space probe led the first close flyby of one of the most primordial and distant objects left over from the formation of the Solar system, the contact binary Kuiper Belt object (486958) Arrokoth. This is composed of two progenitors, the lobes called Ultima and Thule. In the current work, we investigate Arrokoth’s surface in detail to identify the location of equilibrium points and also we explore each lobe’s individual dynamic features. We assume that Arrokoth’s irregular shape is a homogeneous polyhedra contact binary. We explore its dynamic characteristics numerically by computing its irregular binary geopotential in order to study its quantities, such as geometric height, oblateness, ellipticity and zero-power curves. The stability of Arrokoth Hill was also explored through zero-velocity curves. Arrokoth’s external equilibrium points have no radial symmetry due to its highly irregular shape. We identified even equilibrium points concerning its shape and spin rate: i.e. four unstable external equilibrium points and three inner equilibrium points, where two points are linearly stable, with an unstable central point that has a slight offset from its centroid. Moreover, the large and small lobes each have five equilibrium points with different topological structures from those found in Arrokoth. Our results also indicate that the equatorial region of Arrokoth’s lobes is an unstable area due to the high rotation period, while its polar locations are stable resting sites for surface particles. Finally, the zero-power curves indicate the locations around Arrokoth where massless particles experience enhancing and receding orbital energy.

Science ◽  
2020 ◽  
Vol 367 (6481) ◽  
pp. eaay6620 ◽  
Author(s):  
W. B. McKinnon ◽  
D. C. Richardson ◽  
J. C. Marohnic ◽  
J. T. Keane ◽  
W. M. Grundy ◽  
...  

The New Horizons spacecraft’s encounter with the cold classical Kuiper Belt object (486958) Arrokoth (provisional designation 2014 MU69) revealed a contact-binary planetesimal. We investigated how Arrokoth formed and found that it is the product of a gentle, low-speed merger in the early Solar System. Its two lenticular lobes suggest low-velocity accumulation of numerous smaller planetesimals within a gravitationally collapsing cloud of solid particles. The geometric alignment of the lobes indicates that they were a co-orbiting binary that experienced angular momentum loss and subsequent merger, possibly because of dynamical friction and collisions within the cloud or later gas drag. Arrokoth’s contact-binary shape was preserved by the benign dynamical and collisional environment of the cold classical Kuiper Belt and therefore informs the accretion processes that operated in the early Solar System.


Science ◽  
2019 ◽  
Vol 364 (6441) ◽  
pp. eaaw9771 ◽  
Author(s):  
S. A. Stern ◽  
H. A. Weaver ◽  
J. R. Spencer ◽  
C. B. Olkin ◽  
G. R. Gladstone ◽  
...  

The Kuiper Belt is a distant region of the outer Solar System. On 1 January 2019, the New Horizons spacecraft flew close to (486958) 2014 MU69, a cold classical Kuiper Belt object approximately 30 kilometers in diameter. Such objects have never been substantially heated by the Sun and are therefore well preserved since their formation. We describe initial results from these encounter observations. MU69 is a bilobed contact binary with a flattened shape, discrete geological units, and noticeable albedo heterogeneity. However, there is little surface color or compositional heterogeneity. No evidence for satellites, rings or other dust structures, a gas coma, or solar wind interactions was detected. MU69’s origin appears consistent with pebble cloud collapse followed by a low-velocity merger of its two lobes.


Science ◽  
2020 ◽  
Vol 367 (6481) ◽  
pp. eaay3999 ◽  
Author(s):  
J. R. Spencer ◽  
S. A. Stern ◽  
J. M. Moore ◽  
H. A. Weaver ◽  
K. N. Singer ◽  
...  

The Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, is composed of primitive objects preserving information about Solar System formation. In January 2019, the New Horizons spacecraft flew past one of these objects, the 36-kilometer-long contact binary (486958) Arrokoth (provisional designation 2014 MU69). Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters in diameter) within a radius of 8000 kilometers. Arrokoth has a lightly cratered, smooth surface with complex geological features, unlike those on previously visited Solar System bodies. The density of impact craters indicates the surface dates from the formation of the Solar System. The two lobes of the contact binary have closely aligned poles and equators, constraining their accretion mechanism.


2001 ◽  
Vol 98 (21) ◽  
pp. 11863-11866 ◽  
Author(s):  
W. Romanishin ◽  
S. C. Tegler ◽  
T. W. Rettig ◽  
G. Consolmagno ◽  
B. Botthof

2009 ◽  
Vol 5 (S263) ◽  
pp. 192-196 ◽  
Author(s):  
Pedro Lacerda

AbstractKuiper belt object 136108 Haumea is one of the most fascinating bodies in our solar system. Approximately 2000 × 1600 × 1000 km in size, it is one of the largest Kuiper belt objects (KBOs) and an unusually elongated one for its size. The shape of Haumea is the result of rotational deformation due to its extremely short 3.9-hour rotation period. Unlike other 1000 km-scale KBOs which are coated in methane ice the surface of Haumea is covered in almost pure H2O-ice. The bulk density of Haumea, estimated around 2.6 g cm−3, suggests a more rocky interior composition, different from the H2O-ice surface. Recently, Haumea has become the second KBO after Pluto to show observable signs of surface features. A region darker and redder than the average surface of Haumea has been identified, the composition and origin of which remain unknown. I discuss this recent finding and what it may tell us about Haumea.


Nature ◽  
1993 ◽  
Vol 362 (6422) ◽  
pp. 730-732 ◽  
Author(s):  
David Jewitt ◽  
Jane Luu

2006 ◽  
Vol 640 (1) ◽  
pp. L87-L89 ◽  
Author(s):  
K. M Barkume ◽  
M. E. Brown ◽  
E. L. Schaller

Nature ◽  
2004 ◽  
Vol 432 (7018) ◽  
pp. 731-733 ◽  
Author(s):  
David C. Jewitt ◽  
Jane Luu

Sign in / Sign up

Export Citation Format

Share Document