scholarly journals The geology and geophysics of Kuiper Belt object (486958) Arrokoth

Science ◽  
2020 ◽  
Vol 367 (6481) ◽  
pp. eaay3999 ◽  
Author(s):  
J. R. Spencer ◽  
S. A. Stern ◽  
J. M. Moore ◽  
H. A. Weaver ◽  
K. N. Singer ◽  
...  

The Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, is composed of primitive objects preserving information about Solar System formation. In January 2019, the New Horizons spacecraft flew past one of these objects, the 36-kilometer-long contact binary (486958) Arrokoth (provisional designation 2014 MU69). Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters in diameter) within a radius of 8000 kilometers. Arrokoth has a lightly cratered, smooth surface with complex geological features, unlike those on previously visited Solar System bodies. The density of impact craters indicates the surface dates from the formation of the Solar System. The two lobes of the contact binary have closely aligned poles and equators, constraining their accretion mechanism.

Science ◽  
2020 ◽  
Vol 367 (6481) ◽  
pp. eaay6620 ◽  
Author(s):  
W. B. McKinnon ◽  
D. C. Richardson ◽  
J. C. Marohnic ◽  
J. T. Keane ◽  
W. M. Grundy ◽  
...  

The New Horizons spacecraft’s encounter with the cold classical Kuiper Belt object (486958) Arrokoth (provisional designation 2014 MU69) revealed a contact-binary planetesimal. We investigated how Arrokoth formed and found that it is the product of a gentle, low-speed merger in the early Solar System. Its two lenticular lobes suggest low-velocity accumulation of numerous smaller planetesimals within a gravitationally collapsing cloud of solid particles. The geometric alignment of the lobes indicates that they were a co-orbiting binary that experienced angular momentum loss and subsequent merger, possibly because of dynamical friction and collisions within the cloud or later gas drag. Arrokoth’s contact-binary shape was preserved by the benign dynamical and collisional environment of the cold classical Kuiper Belt and therefore informs the accretion processes that operated in the early Solar System.


Life ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 126
Author(s):  
Dale P. Cruikshank ◽  
Yvonne J. Pendleton ◽  
William M. Grundy

The close encounters of the Pluto–Charon system and the Kuiper Belt object Arrokoth (formerly 2014 MU69) by NASA’s New Horizons spacecraft in 2015 and 2019, respectively, have given new perspectives on the most distant planetary bodies yet explored. These bodies are key indicators of the composition, chemistry, and dynamics of the outer regions of the Solar System’s nascent environment. Pluto and Charon reveal characteristics of the largest Kuiper Belt objects formed in the dynamically evolving solar nebula inward of ~30 AU, while the much smaller Arrokoth is a largely undisturbed relic of accretion at ~45 AU. The surfaces of Pluto and Charon are covered with volatile and refractory ices and organic components, and have been shaped by geological activity. On Pluto, N2, CO and CH4 are exchanged between the atmosphere and surface as gaseous and condensed phases on diurnal, seasonal and longer timescales, while Charon’s surface is primarily inert H2O ice with an ammoniated component and a polar region colored with a macromolecular organic deposit. Arrokoth is revealed as a fused binary body in a relatively benign space environment where it originated and has remained for the age of the Solar System. Its surface is a mix of CH3OH ice, a red-orange pigment of presumed complex organic material, and possibly other undetected components.


Science ◽  
2019 ◽  
Vol 364 (6441) ◽  
pp. eaaw9771 ◽  
Author(s):  
S. A. Stern ◽  
H. A. Weaver ◽  
J. R. Spencer ◽  
C. B. Olkin ◽  
G. R. Gladstone ◽  
...  

The Kuiper Belt is a distant region of the outer Solar System. On 1 January 2019, the New Horizons spacecraft flew close to (486958) 2014 MU69, a cold classical Kuiper Belt object approximately 30 kilometers in diameter. Such objects have never been substantially heated by the Sun and are therefore well preserved since their formation. We describe initial results from these encounter observations. MU69 is a bilobed contact binary with a flattened shape, discrete geological units, and noticeable albedo heterogeneity. However, there is little surface color or compositional heterogeneity. No evidence for satellites, rings or other dust structures, a gas coma, or solar wind interactions was detected. MU69’s origin appears consistent with pebble cloud collapse followed by a low-velocity merger of its two lobes.


2004 ◽  
Vol 213 ◽  
pp. 263-270
Author(s):  
K. J. Meech ◽  
J. M. Bauer

We present a summary of ground-based work being done to gain an understanding of primitive comet, Centaur and Kuiper belt object compositions. We are seeing a diversity of compositions in outer solar system small bodies with respect to the presence of water and organics which may reflect both primordial differences and evolutionary processes.


2015 ◽  
Vol 11 (A29A) ◽  
pp. 227-227
Author(s):  
Dominique Bockelée-Morvan

The XXIX IAU General Assembly took place during the golden year of the exploration of small solar system bodies. With the Rosetta ESA mission around comet 67P, NASA Dawn and New Horizons missions nearby dwarf planets Ceres and Pluto, respectively, and the NASA/Cassini mission in Saturn neighborhood, year 2015 marked an important step towards further understanding of small solar system bodies. On August 11-13, Focus meeting 9 "Highlights in the exploration of small worlds" gathered scientists of all over the world to present and discuss the spectacular results obtained from these missions, as well as recent achievements obtained from past missions, comprehensive spectroscopic surveys from space (e.g., Herschel, NEOWISE, Gaia), ground-based observations, and geochemical analyses. This meeting was also the opportunity to discuss the state of our understanding of the nature of the various populations of small bodies in the Solar System, including icy satellites, in a cosmo-chemistry perspective.


Eos ◽  
2018 ◽  
Vol 99 ◽  
Author(s):  
Jenessa Duncombe

The flyby of Ultima Thule on New Year’s Day will give us our first glimpse of a mysterious Kuiper Belt object.


2021 ◽  
Vol 03 (01) ◽  
pp. 85-87
Author(s):  
Türkanə Mirzəli qızı Əliyeva ◽  
◽  
Vəfa Əjdər qızı Qafarova ◽  

The article provides extensive information on the formation, evolution and structure of the solar system. It also discusses the planets of the solar system and the dwarf planets. Its noted that the Kuiper objects are the celestial bodies which belongs to the solar system. NASA's New Horizons spacecraft is currently helps studying four objects in the Kuiper belt. There is also talked about TTauri type stars. The article discusses the future transformation of the Sun from a Red Giant to a White Dwarf. Key words: Kuiper Belt, T Tauri Star, Dwarf Planets, Planet X


Icarus ◽  
2021 ◽  
Vol 356 ◽  
pp. 113723 ◽  
Author(s):  
Jason D. Hofgartner ◽  
Bonnie J. Buratti ◽  
Susan D. Benecchi ◽  
Ross A. Beyer ◽  
Andrew Cheng ◽  
...  

1992 ◽  
Vol 152 ◽  
pp. 123-132
Author(s):  
Ch Froeschle ◽  
P. Farinella ◽  
C. Froeschle ◽  
Z. Knežević ◽  
A. Milani

Generalizing the secular perturbation theory of Milani and Knežević (1990), we have determined in the a — e — I proper elements space the locations of the secular resonances between the precession rates of the longitudes of perihelion and node of a small body and the corresponding eigenfrequencies of the secular perturbations of the four outer planets. We discuss some implications of the results for the dynamical evolution of small solar system bodies. In particular, our findings include: (i) the fact that the g = g6 resonance in the inner asteroid belt lies closer than previously assumed to the Flora region, providing a plausible dynamical route to inject asteroid fragments into planet-crossing orbits; (ii) the possible presence of some low-inclination “stable islands” between the orbits of the outer planets; (iii) the fact that none of the secular resonances considered in this work exists for semimajor axes > 50 AU, so that these resonances do not provide a mechanism for transporting inwards possible Kuiper–belt comets.


Sign in / Sign up

Export Citation Format

Share Document