scholarly journals The stationary points of the hierarchical three-body problem

2020 ◽  
Vol 499 (2) ◽  
pp. 1682-1700 ◽  
Author(s):  
Bradley M S Hansen ◽  
Smadar Naoz

ABSTRACT We study the stationary points of the hierarchical three body problem in the planetary limit (m1, m2 ≪ m0) at both the quadrupole and octupole orders. We demonstrate that the extension to octupole order preserves the principal stationary points of the quadrupole solution in the limit of small outer eccentricity e2 but that new families of stable fixed points occur in both prograde and retrograde cases. The most important new equilibria are those that branch off from the quadrupolar solutions and extend to large e2. The apsidal alignment of these families is a function of mass and inner planet eccentricity, and is determined by the relative directions of precession of ω1 and ω2 at the quadrupole level. These new equilibria are also the most resilient to the destabilizing effects of relativistic precession. We find additional equilibria that enable libration of the inner planet argument of pericentre in the limit of radial orbits and recover the non-linear analogue of the Laplace–Lagrange solutions in the coplanar limit. Finally, we show that the chaotic diffusion and orbital flips identified with the eccentric Kozai–Lidov mechanism and its variants can be understood in terms of the stationary points discussed here.

Author(s):  
Jagadish Singh ◽  
Tyokyaa K. Richard

This paper studies the classical restricted three-body problem of a carbon atom in the vicinity of two carbon 60 fullerenes (  fullerenes) at the nanoscale. The total molecular energy between the two fullerenes is determined analytically by approximating the pairwise potential energies between the carbon atoms on the fullerenes by a continuous approach. Using software MATHEMATICA, we compute the positions of the stationary points and their stability for a carbon atom at the nanosacle and it is observed that for each set of values, there exists at least one complex root with the positive real part and hence in the Lyapunov sense, the stationary points are unstable. Since only attractive Van der Waals forces contribute to the orbiting behavior, no orbiting phenomenon can be observed for , where the Van der Waals forces becomes repulsive. Although the  orbital is speculative in nature and also presents exciting possibilities, there are still many practical challenges that would need to be overcome before the  orbital might be realized. However, the present theoretical study is a necessary precursor to any of such developments.


Sign in / Sign up

Export Citation Format

Share Document