van der waals forces
Recently Published Documents


TOTAL DOCUMENTS

727
(FIVE YEARS 46)

H-INDEX

73
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Shubin Liu ◽  
Shujing Zhong ◽  
Xin He ◽  
Siyuan Liu ◽  
Bin Wang ◽  
...  

Chemical bonds and noncovalent interactions are extraordinarily important concepts in chemistry and beyond. Using density-based quantities to describe them has a long history in the literature, yet none can satisfactorily describe the entire spectrum of interactions from strong chemical bonds to weak van der Waals forces. In this work, employing Pauli energy as the theoretical foundation, we fill in that knowledge gap. Our results show that the newly established density-based index can describe single and multiple covalent bonds, ionic bonds, metallic bonds, and different kinds of noncovalent interactions, all with unique and readily identifiable signature shapes. Two new descriptors, NBI (nonbonding and bonding identification) index and USI (ultra-strong interaction) index, have been introduced in this work. Together with NCI (noncovalent interaction) and SCI (strong covalent interaction) indexes already available in the literature, a density-based description of both chemical bonds and noncovalent interactions is accomplished.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022066
Author(s):  
Pengying Niu ◽  
Beibei Liu ◽  
Huanjun Li

Abstract With the development of flexible wearable electronic devices, researches on self-healing conductive materials have become prevalent. However, the self-healing performance of most conductive self-healing materials is commonly achieved by the external stimulus that may cause damage to the equipment. Pparticularly, these self-healing materials may lose the self-healing properties when exposed to a high-humidity environment. Here, we adopted two hydrophobic monomers (2-methoxyethyl acrylate and ethyl methacrylate) to obtain a self-healing elastomer that could display self-healing properties in air or under water though van der Waals forces. The quality and mechanical properties of the elastomer material could keep stable after stored under water for half a month. This elastomer material was capable of self-healing in different environments with self-repair efficiencies more than 50% in deionized water, strong acid solution and strong alkaline solution. The self-repair efficiencies were up to 77% at room temperature(T=25°C) and 64% at low temperature (T=-20°C) in air.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1197
Author(s):  
Aleksandr V. Lun-Fu ◽  
Alexey M. Bubenchikov ◽  
Mikhail A. Bubenchikov ◽  
Vyacheslav A. Ovchinnikov

Supramolecular interaction of carbon nanotori in a columnar phase is described using the methods of classical molecular dynamics. The collective behavior and dynamic properties of toroidal molecules arising under the action of the van der Waals forces are studied. The conditions under which columnar structures based on molecular tori become unstable and rearrange into another structure are investigated. The reasons for the appearance of two types of directed rotational motion from the chaotic motion of molecules are discussed.


Small ◽  
2021 ◽  
Vol 17 (38) ◽  
pp. 2170196
Author(s):  
Sofie Cambré ◽  
Ming Liu ◽  
Dmitry Levshov ◽  
Keigo Otsuka ◽  
Shigeo Maruyama ◽  
...  

IUCrData ◽  
2021 ◽  
Vol 6 (8) ◽  
Author(s):  
Joshua Rushlow ◽  
Andrei V. Astashkin ◽  
Daniel R. Albert ◽  
Edward Rajaseelan

A new triazole-based neutral RhI complex, [Rh(Cl0.846Br0.154)(C6H11N3)(C8H12)], has been synthesized and structurally characterized. The RhI atom has a distorted square-planar coordination environment, formed by a bidentate cycloocta-1,5-diene (COD) ligand, an N-heterocyclic carbene and a halide ligand that shows substitutional disorder (Cl:Br = 0.846:0.154). No significant intermolecular interactions other than van der Waals forces are found in the crystal structure. Diffraction data indicated a two-component inversion twin with a ratio of 0.95 (5):0.05 (5).


Small ◽  
2021 ◽  
pp. 2102585
Author(s):  
Sofie Cambré ◽  
Ming Liu ◽  
Dmitry Levshov ◽  
Keigo Otsuka ◽  
Shigeo Maruyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document