scholarly journals A real-time fast radio burst: polarization detection and multiwavelength follow-up

2014 ◽  
Vol 447 (1) ◽  
pp. 246-255 ◽  
Author(s):  
E. Petroff ◽  
M. Bailes ◽  
E. D. Barr ◽  
B. R. Barsdell ◽  
N. D. R. Bhat ◽  
...  
Author(s):  
Nozomu Tominaga ◽  
Yuu Niino ◽  
Tomonori Totani ◽  
Naoki Yasuda ◽  
Hisanori Furusawa ◽  
...  
Keyword(s):  

2017 ◽  
Vol 14 (S339) ◽  
pp. 27-32
Author(s):  
B. W. Stappers ◽  
M. Caleb ◽  
L. N. Driessen

AbstractThe radio sky is full of transients, their time-scales ranging from nanoseconds to decades. Recent developments in technology sensitivity and computing capabilities have opened up the short end of that range, and are revealing a plethora of new phenomenologies. Studies of radio transients were previously restricted to analyses of archived data, but are now including real-time analyses. We focus here on Fast Radio Bursts, discuss and compare the properties of the population, and describe what is to date the only known repeating Fast Radio Burst and its host galaxy. We also review what will be possible with the new instrumentation coming online.


2019 ◽  
Vol 488 (3) ◽  
pp. 2989-3002 ◽  
Author(s):  
W Farah ◽  
C Flynn ◽  
M Bailes ◽  
A Jameson ◽  
T Bateman ◽  
...  

Abstract We detail a new fast radio burst (FRB) survey with the Molonglo Radio Telescope, in which six FRBs were detected between 2017 June and 2018 December. By using a real-time FRB detection system, we captured raw voltages for five of the six events, which allowed for coherent dedispersion and very high time resolution (10.24 $\mu$s) studies of the bursts. Five of the FRBs show temporal broadening consistent with interstellar and/or intergalactic scattering, with scattering time-scales ranging from 0.16 to 29.1 ms. One burst, FRB181017, shows remarkable temporal structure, with three peaks each separated by 1 ms. We searched for phase-coherence between the leading and trailing peaks and found none, ruling out lensing scenarios. Based on this survey, we calculate an all-sky rate at 843 MHz of $98^{+59}_{-39}$ events sky−1 d−1 to a fluence limit of 8 Jy ms: a factor of 7 below the rates estimated from the Parkes and ASKAP telescopes at 1.4 GHz assuming the ASKAP-derived spectral index α = −1.6 (Fν ∝ να). Our results suggest that FRB spectra may turn over below 1 GHz. Optical, radio, and X-ray follow-up has been made for most of the reported bursts, with no associated transients found. No repeat bursts were found in the survey.


2020 ◽  
Vol 497 (1) ◽  
pp. 125-129 ◽  
Author(s):  
Mieke Bouwhuis ◽  
Keith W Bannister ◽  
Jean-Pierre Macquart ◽  
R M Shannon ◽  
David L Kaplan ◽  
...  

ABSTRACT We report the results of the rapid follow-up observations of gamma-ray bursts (GRBs) detected by the Fermi satellite to search for associated fast radio bursts. The observations were conducted with the Australian Square Kilometre Array Pathfinder at frequencies from 1.2 to 1.4 GHz. A set of 20 bursts, of which four were short GRBs, were followed up with a typical latency of about 1 min, for a duration of up to 11 h after the burst. The data were searched using 4096 dispersion measure trials up to a maximum dispersion measure of 3763 pc cm−3, and for pulse widths w over a range of duration from 1.256 to 40.48 ms. No associated pulsed radio emission was observed above $26 \, {\rm Jy\, ms}\, (w/1\, {\rm ms})^{-1/2}$ for any of the 20 GRBs.


Nature ◽  
2020 ◽  
Vol 587 (7832) ◽  
pp. 43-44
Author(s):  
Amanda Weltman ◽  
Anthony Walters
Keyword(s):  

Nature ◽  
2020 ◽  
Vol 582 (7812) ◽  
pp. 322-323 ◽  
Author(s):  
Alexandra Witze

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 67-LB
Author(s):  
JAN SOUPAL ◽  
JOHN J. ISITT ◽  
GEORGE GRUNBERGER ◽  
MARTIN PRAZNY ◽  
CHRISTOPHER PARKIN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document