radio transients
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 34)

H-INDEX

22
(FIVE YEARS 4)

2022 ◽  
Vol 21 (12) ◽  
pp. 314
Author(s):  
Shan-Ping You ◽  
Pei Wang ◽  
Xu-Hong Yu ◽  
Xiao-Yao Xie ◽  
Di Li ◽  
...  

Abstract We developed a GPU based single-pulse search pipeline (GSP) with a candidate-archiving database. Largely based upon the infrastructure of the open source PulsaR Exploration and Search Toolkit (PRESTO), GSP implements GPU acceleration of the de-dispersion and integrates a candidate-archiving database. We applied GSP to the data streams from the Commensal Radio Astronomy FAST Survey (CRAFTS), which resulted in quasi-real-time processing. The integrated candidate database facilitates synergistic usage of multiple machine-learning tools and thus improves efficient identification of radio pulsars such as rotating radio transients (RRATs) and fast radio bursts (FRBs). We first tested GSP on pilot CRAFTS observations with the FAST Ultra-Wide Band (UWB) receiver. GSP detected all pulsars known from the the Parkes multibeam pulsar survey in the corresponding sky area covered by the FAST-UWB. GSP also discovered 13 new pulsars. We measured the computational efficiency of GSP to be ∼120 times faster than the original PRESTO and ∼60 times faster than an MPI-parallelized version of PRESTO.


Author(s):  
Aleksandra Wołowska ◽  
Magdalena Kunert‐Bajraszewska ◽  
Kunal Mooley ◽  
Aneta Siemiginowska ◽  
Preeti Kharb ◽  
...  
Keyword(s):  

2021 ◽  
Vol 922 (1) ◽  
pp. 43
Author(s):  
D. C. Good ◽  
B. C. Andersen ◽  
P. Chawla ◽  
K. Crowter ◽  
F. Q. Dong ◽  
...  

Abstract We report the discovery of seven new Galactic pulsars with the Canadian Hydrogen Intensity Mapping Experiment’s Fast Radio Burst (CHIME/FRB) backend. These sources were first identified via single pulses in CHIME/FRB, then followed up with CHIME/Pulsar. Four sources appear to be rotating radio transients, pulsar-like sources with occasional single-pulse emission with an underlying periodicity. Of those four sources, three have detected periods ranging from 220 ms to 2.726 s. Three sources have more persistent but still intermittent emission and are likely intermittent or nulling pulsars. We have determined phase-coherent timing solutions for the latter two. These seven sources are the first discovery of previously unknown Galactic sources with CHIME/FRB and highlight the potential of fast radio burst detection instruments to search for intermittent Galactic radio sources.


2021 ◽  
Vol 922 (1) ◽  
pp. 35
Author(s):  
G. Y. Agazie ◽  
M. G. Mingyar ◽  
M. A. McLaughlin ◽  
J. K. Swiggum ◽  
D. L. Kaplan ◽  
...  

Abstract The Green Bank North Celestial Cap survey is a 350 MHz all-sky survey for pulsars and fast radio transients using the Robert C. Byrd Green Bank Telescope. To date, the survey has discovered over 190 pulsars, including 33 millisecond pulsars and 24 rotating radio transients. Several exotic pulsars have been discovered in the survey, including PSR J1759+5036, a binary pulsar with a 176 ms spin period in an orbit with a period of 2.04 days, an eccentricity of 0.3, and a projected semi-major axis of 6.8 light seconds. Using seven years of timing data, we are able to measure one post–Keplerian parameter, advance of periastron, which has allowed us to constrain the total system mass to 2.62 ± 0.03 M ⊙. This constraint, along with the spin period and orbital parameters, suggests that this is a double neutron star system, although we cannot entirely rule out a pulsar-white dwarf binary. This pulsar is only detectable in roughly 45% of observations, most likely due to scintillation. However, additional observations are required to determine whether there may be other contributing effects.


2021 ◽  
pp. 100512
Author(s):  
D. Ruhe ◽  
M. Kuiack ◽  
A. Rowlinson ◽  
R. Wijers ◽  
P. Forré

2021 ◽  
Vol 920 (1) ◽  
pp. 16
Author(s):  
Akshay Suresh ◽  
Shami Chatterjee ◽  
James M. Cordes ◽  
Fronefield Crawford
Keyword(s):  

Author(s):  
Iris de Ruiter ◽  
Guillaume Leseigneur ◽  
Antonia Rowlinson ◽  
Ralph A M J Wijers ◽  
Alexander Drabent ◽  
...  

Abstract We present a search for transient radio sources on timescales of 2-9 years at 150 MHz. This search is conducted by comparing the first Alternative Data Release of the TIFR GMRT Sky Survey (TGSS ADR1) and the second data release of the LOFAR Two-metre Sky Survey (LoTSS DR2). The overlapping survey area covers 5570 $\rm {deg}^2$ on the sky, or 14 per cent of the total sky. We introduce a method to compare the source catalogues that involves a pair match of sources, a flux density cutoff to meet the survey completeness limit and a newly developed compactness criterion. This method is used to identify both transient candidates in the TGSS source catalogue that have no counterpart in the LoTSS catalogue and transient candidates in LoTSS without a counterpart in TGSS. We find that imaging artefacts and uncertainties and variations in the flux density scales complicate the transient search. Our method to search for transients by comparing two different surveys, while taking into account imaging artefacts around bright sources and misaligned flux scales between surveys, is universally applicable to future radio transient searches. No transient sources were identified, but we are able to place an upper limit on the transient surface density of <5.4 · 10−4 deg−2 at 150 MHz for compact sources with an integrated flux density over 100 mJy. Here we define a transient as a compact source with flux density greater than 100 mJy that appears in the catalogue of one survey without a counterpart in the other survey.


Author(s):  
Jedrzej A Jawor ◽  
Thomas M Tauris

Abstract The origin and fate of magnetars (young, extremely magnetized neutron stars, NSs) remains unsolved. Probing their evolution is therefore crucial for investigating possible links to other species of isolated NSs, such as the X-ray dim NSs (XDINSs) and rotating radio transients (RRATs). Here we investigate the spin evolution of magnetars. Two avenues of evolution are considered: one with exponentially decaying B-fields, the other with sub- and super-exponential decay. Using Monte Carlo methods, we synthesize magnetar populations using different input distributions and physical parameters, such as for the initial spin period, its time derivative and the B-field decay timescale. Additionally, we introduce a fade-away procedure that can account for the fading of old magnetars, and we briefly discuss the effect of alignment of the B-field and spin axes. Imposing the Galactic core-collapse supernova rate of ∼20 kyr−1 as a strict upper limit on the magnetar birthrate and comparing the synthetic populations to the observed one using both manual and automatic optimization algorithms for our input parameter study, we find that the B-field must decay exponentially or super-exponentially with a characteristic decay timescale of 0.5 − 10 kyr (with a best value of ∼4 kyr). In addition, the initial spin period must be less than 2 sec. If these constraints are kept, we conclude that there are multiple choices of input physics that can reproduce the observed magnetar population reasonably well. We also conclude that magnetars may well be evolutionary linked to the population of XDINSs, whereas they are in general unlikely to evolve into RRATs.


Author(s):  
A. W. Hotan ◽  
J. D. Bunton ◽  
A. P. Chippendale ◽  
M. Whiting ◽  
J. Tuthill ◽  
...  

Abstract In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$ . As a two-dimensional array of 36 $\times$ 12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.


Sign in / Sign up

Export Citation Format

Share Document