scholarly journals A search for fast-radio-burst-like emission from Fermi gamma-ray bursts

2020 ◽  
Vol 497 (1) ◽  
pp. 125-129 ◽  
Author(s):  
Mieke Bouwhuis ◽  
Keith W Bannister ◽  
Jean-Pierre Macquart ◽  
R M Shannon ◽  
David L Kaplan ◽  
...  

ABSTRACT We report the results of the rapid follow-up observations of gamma-ray bursts (GRBs) detected by the Fermi satellite to search for associated fast radio bursts. The observations were conducted with the Australian Square Kilometre Array Pathfinder at frequencies from 1.2 to 1.4 GHz. A set of 20 bursts, of which four were short GRBs, were followed up with a typical latency of about 1 min, for a duration of up to 11 h after the burst. The data were searched using 4096 dispersion measure trials up to a maximum dispersion measure of 3763 pc cm−3, and for pulse widths w over a range of duration from 1.256 to 40.48 ms. No associated pulsed radio emission was observed above $26 \, {\rm Jy\, ms}\, (w/1\, {\rm ms})^{-1/2}$ for any of the 20 GRBs.

2020 ◽  
Vol 495 (4) ◽  
pp. 4782-4799 ◽  
Author(s):  
Brendan O’Connor ◽  
Paz Beniamini ◽  
Chryssa Kouveliotou

ABSTRACT Observational follow up of well localized short gamma-ray bursts (SGRBs) has left $20\!-\!30{{\ \rm per\ cent}}$ of the population without a coincident host galaxy association to deep optical and NIR limits (≳26 mag). These SGRBs have been classified as observationally hostless due to their lack of strong host associations. It has been argued that these hostless SGRBs could be an indication of the large distances traversed by the binary neutron star system (due to natal kicks) between its formation and its merger (leading to an SGRB). The distances of GRBs from their host galaxies can be indirectly probed by the surrounding circumburst densities. We show that a lower limit on those densities can be obtained from early afterglow light curves. We find that ${\lesssim}16{{\ \rm per\ cent}}$ of short GRBs in our sample took place at densities ≲10−4 cm−3. These densities represent the expected range of values at distances greater than the host galaxy’s virial radii. We find that out of the five SGRBs in our sample that have been found to be observationally hostless, none are consistent with having occurred beyond the virial radius of their birth galaxies. This implies one of two scenarios. Either these observationally hostless SGRBs occurred outside of the half-light radius of their host galaxy, but well within the galactic halo, or in host galaxies at moderate to high redshifts (z ≳ 2) that were missed by follow-up observations.


2020 ◽  
Vol 494 (1) ◽  
pp. 1229-1236 ◽  
Author(s):  
Nicola T Locatelli ◽  
Gianni Bernardi ◽  
Germano Bianchi ◽  
Riccardo Chiello ◽  
Alessio Magro ◽  
...  

ABSTRACT Fast radio bursts (FRBs) remain one of the most enigmatic astrophysical sources. Observations have significantly progressed over the last few years, due to the capabilities of new radio telescopes and the refurbishment of existing ones. Here, we describe the upgrade of the Northern Cross radio telescope, operating in the 400–416 MHz frequency band, with the ultimate goal of turning the array into a dedicated instrument to survey the sky for FRBs. We present test observations of the pulsar B0329+54 to characterize the system performance and forecast detectability. Observations with the system currently in place are still limited by modest sky coverage (∼9.4 deg2) and biased by smearing of high dispersion measure events within each frequency channels. In its final, upgraded configuration, however, the telescope will be able to carry out unbiased FRB surveys over a ∼350 deg2 instantaneous field of view up to z ∼ 5, with a (nearly constant) $\sim 760 \, (\tau /{\rm ms})^{-0.5}$ mJy rms sensitivity.


2017 ◽  
Vol 12 (S331) ◽  
pp. 39-44
Author(s):  
Antonio de Ugarte Postigo ◽  
Christina Thöne ◽  
Zach Cano ◽  
David Alexander Kann ◽  
Luca Izzo ◽  
...  

AbstractObserving the supernovae (SNe) associated to the different types of gamma-ray bursts (GRBs) is one of the few means to study their progenitors. In the past years, it has become clear that GRB-like events are more heterogeneous than previously thought. There is a marked difference between long GRBs, which are produced by the collapse of very massive stars and are normally associated with broad-lined type Ic SNe, and short bursts, which occur when two compact objects merge and that, at least in some cases, can produce an associated kilonova. Moreover, the SNe associated with different sub-types of long GRBs are also seen to differ, especially those associated with ultra-long duration GRBs. To address this issue in a systematic way we started an observing programme in 2010 at the 10.4m GTC telescope. Here we present some results of our programme, including the detection of 12 new GRB-SNe. Highlights of our sample are the discovery of the first spectroscopic SN associated with a highly energetic (Eγ, iso ~ 1054 erg) “cosmological” burst (GRB 130427A), the study of the SN associated with a shock-breakout GRB (GRB 140606B) and the SN associated with the peculiar ultra-long GRB 101225A at z = 0.85. The sample includes also the follow-up of several short GRBs in search for kilonovae emission (GRB 130603B and GRB 160821B are important examples). Amongst our latest results we present the photometric and spectroscopic observations of the SNe associated with GRB 150818A and GRB 161219B.


Author(s):  
S Hackstein ◽  
M Brüggen ◽  
F Vazza

Abstract Context: Fast radio bursts are transient radio pulses of extragalactic origin. Their dispersion measure is indicative of the baryon content in the ionized intergalactic medium between the source and the observer. However, inference using unlocalized fast radio bursts is degenerate to the distribution of redshifts of host galaxies. Method: We perform a joint inference of the intergalactic baryon content and the fast radio burst redshift distribution with the use of Bayesian statistics by comparing the likelihood of different models to reproduce the observed statistics in order to infer the most likely models. In addition to two models of the intergalactic medium, we consider contributions from the local environment of the source, assumed to be a magnetar, as well as a representative ensemble of host and intervening galaxies. Results: Assuming that the missing baryons reside in the ionized intergalactic medium, our results suggest that the redshift distribution of observed fast radio bursts peaks at z ≲ 0.6. However, conclusions from different instruments regarding the intergalactic baryon content diverge and thus require additional changes to the observed distribution of host redshifts, beyond those caused by telescope selection effects.


2020 ◽  
Author(s):  
C.K. Li ◽  
Lin Lin ◽  
S.L. Xiong ◽  
Mingyu Ge ◽  
X.B. Li ◽  
...  

Abstract Fast radio bursts (FRBs) are short pulses observed in radio band from cosmological distances, some of which emit repeating bursts. The physical origins of these mysterious events have been subject to wide speculations and heated debates. One class of models invoke soft gamma-ray repeaters (SGRs), or magnetars, as the sources of FRBs. Magnetars are rotating neutron stars with extremely strong magnetic field and can sporadically emit bursts from X-ray (keV) to soft gamma-ray (sub-MeV) with duration from 10􀀀2 s to 102 s. However, even though some bright radio bursts have been observed from some magnetars, no FRB-like events had been detected to be associated with any magnetar burst, including one giant flare, and no radio burst has been associated with any X-ray event from any magnetar. Therefore, there is still no observational evidence for magnetar-FRB association up to today. Recently, a pair of FRB-like bursts (FRB~200428 hereafter) separated by 30 milliseconds (ms) were detected from the general direction of the Galactic magnetar SGR~J1935+2154. Here we report the detection of a non-thermal X-ray burst in the 1--250\,keV energy band with the Insight-HXMT satellite, which we identify as emitted from SGR~J1935+2154. The burst showed two hard peaks with a separation of ms, consistent with the separation between the two bursts in FRB~200428. The delay time between the double radio and X-ray peaks is 8:57s, fully consistent with the dispersion delay of FRB~200428. We thus identify the non-thermal X-ray burst is associated with FRB~200428 whose high energy counterpart is the two hard peaks in X-ray. Our results suggest that the non-thermal X-ray burst and FRB~200428 share the same physical origin in an explosive event from SGR~J1935+2154.


2019 ◽  
Vol 489 (3) ◽  
pp. 3643-3647 ◽  
Author(s):  
Yunpeng Men ◽  
Kshitij Aggarwal ◽  
Ye Li ◽  
Divya Palaniswamy ◽  
Sarah Burke-Spolaor ◽  
...  

ABSTRACT The analogy of the host galaxy of the repeating fast radio burst (FRB) source FRB 121102 and those of long gamma-ray bursts (GRBs) and superluminous supernovae (SLSNe) has led to the suggestion that young magnetars born in GRBs and SLSNe could be the central engine of repeating FRBs. We test such a hypothesis by performing dedicated observations of the remnants of six GRBs with evidence of having a magnetar central engine using the Arecibo telescope and the Robert C. Byrd Green Bank Telescope (GBT). A total of ∼20 h of observations of these sources did not detect any FRB from these remnants. Under the assumptions that all these GRBs left behind a long-lived magnetar and that the bursting rate of FRB 121102 is typical for a magnetar FRB engine, we estimate a non-detection probability of 8.9 × 10−6. Even though these non-detections cannot exclude the young magnetar model of FRBs, we place constraints on the burst rate and luminosity function of FRBs from these GRB targets.


Author(s):  
Ziteng Wang ◽  
Tara Murphy ◽  
David L. Kaplan ◽  
Keith W. Bannister ◽  
Dougal Dobie

Abstract We discuss observational strategies to detect prompt bursts associated with gravitational wave (GW) events using the Australian Square Kilometre Array Pathfinder (ASKAP). Many theoretical models of binary neutron stars mergers predict that bright, prompt radio emission would accompany the merger. The detection of such prompt emission would greatly improve our knowledge of the physical conditions, environment, and location of the merger. However, searches for prompt emission are complicated by the relatively poor localisation for GW events, with the 90% credible region reaching hundreds or even thousands of square degrees. Operating in fly’s eye mode, the ASKAP field of view can reach $\sim1\,000$ deg $^2$ at $\sim$ $888\,{\rm MHz}$ . This potentially allows observers to cover most of the 90% credible region quickly enough to detect prompt emission. We use skymaps for GW170817 and GW190814 from LIGO/Virgo’s third observing run to simulate the probability of detecting prompt emission for GW events in the upcoming fourth observing run. With only alerts released after merger, we find it difficult to slew the telescope sufficiently quickly as to capture any prompt emission. However, with the addition of alerts released before merger by negative-latency pipelines, we find that it should be possible to search for nearby, bright prompt fast radio burst-like emission from GW events. Nonetheless, the rates are low: we would expect to observe $\sim$ 0.012 events during the fourth observing run, assuming that the prompt emission is emitted microseconds around the merger.


Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 76
Author(s):  
Luciano Nicastro ◽  
Cristiano Guidorzi ◽  
Eliana Palazzi ◽  
Luca Zampieri ◽  
Massimo Turatto ◽  
...  

The origin and phenomenology of the Fast Radio Burst (FRB) remains unknown despite more than a decade of efforts. Though several models have been proposed to explain the observed data, none is able to explain alone the variety of events so far recorded. The leading models consider magnetars as potential FRB sources. The recent detection of FRBs from the galactic magnetar SGR J1935+2154 seems to support them. Still, emission duration and energetic budget challenge all these models. Like for other classes of objects initially detected in a single band, it appeared clear that any solution to the FRB enigma could only come from a coordinated observational and theoretical effort in an as wide as possible energy band. In particular, the detection and localisation of optical/NIR or/and high-energy counterparts seemed an unavoidable starting point that could shed light on the FRB physics. Multiwavelength (MWL) search campaigns were conducted for several FRBs, in particular for repeaters. Here we summarize the observational and theoretical results and the perspectives in view of the several new sources accurately localised that will likely be identified by various radio facilities worldwide. We conclude that more dedicated MWL campaigns sensitive to the millisecond–minute timescale transients are needed to address the various aspects involved in the identification of FRB counterparts. Dedicated instrumentation could be one of the key points in this respect. In the optical/NIR band, fast photometry looks to be the only viable strategy. Additionally, small/medium size radiotelescopes co-pointing higher energies telescopes look a very interesting and cheap complementary observational strategy.


2017 ◽  
Vol 607 ◽  
pp. A121 ◽  
Author(s):  
M. G. Bernardini ◽  
G. Ghirlanda ◽  
S. Campana ◽  
P. D’Avanzo ◽  
J.-L. Atteia ◽  
...  

The delay in arrival times between high and low energy photons from cosmic sources can be used to test the violation of the Lorentz invariance (LIV), predicted by some quantum gravity theories, and to constrain its characteristic energy scale EQG that is of the order of the Planck energy. Gamma-ray bursts (GRBs) and blazars are ideal for this purpose thanks to their broad spectral energy distribution and cosmological distances: at first order approximation, the constraints on EQG are proportional to the photon energy separation and the distance of the source. However, the LIV tiny contribution to the total time delay can be dominated by intrinsic delays related to the physics of the sources: long GRBs typically show a delay between high and low energy photons related to their spectral evolution (spectral lag). Short GRBs have null intrinsic spectral lags and are therefore an ideal tool to measure any LIV effect. We considered a sample of 15 short GRBs with known redshift observed by Swift and we estimate a limit on EQG ≳ 1.5 × 1016 GeV. Our estimate represents an improvement with respect to the limit obtained with a larger (double) sample of long GRBs and is more robust than the estimates on single events because it accounts for the intrinsic delay in a statistical sense.


2021 ◽  
Vol 103 (10) ◽  
Author(s):  
Mukul Bhattacharya ◽  
Pawan Kumar ◽  
Eric V. Linder

Sign in / Sign up

Export Citation Format

Share Document