scholarly journals The effects of AGN feedback and SPH formulation on black hole growth in galaxies

2016 ◽  
Vol 458 (2) ◽  
pp. 1402-1416 ◽  
Author(s):  
MaoSheng Liu ◽  
Tiziana Di Matteo ◽  
Yu Feng
2007 ◽  
Vol 3 (S245) ◽  
pp. 63-66 ◽  
Author(s):  
T. J. Cox ◽  
J. Younger ◽  
L. Hernquist ◽  
P. F. Hopkins

AbstractThe hierarchical formation of structure suggests that dark halos, and the galaxies they host, are shaped by their merging history. While the idea that mergers between galaxies of equal mass, i.e., major merger, produce elliptical galaxies has received considerable attention, he galaxies that result from minor merger, i.e., mergers between galaxies with a large mass ratio, is much less understood. We have performed a large number of numerical simulations of minor mergers, including cooling, star formation, and black hole growth in order to study this process in more detail. This talk will present some preliminary results of this study, and in particular, the morphology and kinematics of minor merger remnants.


2009 ◽  
Vol 5 (S267) ◽  
pp. 273-282
Author(s):  
Andrew King

AbstractI review accretion and outflow in active galactic nuclei. Accreti4on appears to occur in a series of very small-scale, chaotic events, whose gas flows have no correlation with the large-scale structure of the galaxy or with each other. The accreting gas has extremely low specific angular momentum and probably represents only a small fraction of the gas involved in a galaxy merger, which may be the underlying driver.Eddington accretion episodes in AGN must be common in order for the supermassive black holes to grow. I show that they produce winds with velocities v ~ 0.1c and ionization parameters implying the presence of resonance lines of helium-like and hydrogen-like iron. The wind creates a strong cooling shock as it interacts with the interstellar medium of the host galaxy, and this cooling region may be observable in an inverse Compton continuum and lower-excitation emission lines associated with lower velocities. The shell of matter swept up by the shocked wind stalls unless the black hole mass has reached the value Mσ implied by the M–σ relation. Once this mass is reached, further black hole growth is prevented. If the shocked gas did not cool as asserted above, the resulting (“energy-driven”) outflow would imply a far smaller SMBH mass than actually observed. Minor accretion events with small gas fractions can produce galaxy-wide outflows, including fossil outflows in galaxies where there is little current AGN activity.


2011 ◽  
Vol 742 (1) ◽  
pp. 3 ◽  
Author(s):  
D. A. Rafferty ◽  
W. N. Brandt ◽  
D. M. Alexander ◽  
Y. Q. Xue ◽  
F. E. Bauer ◽  
...  

2013 ◽  
Vol 9 (S304) ◽  
pp. 43-43
Author(s):  
Amy Barger

AbstractObscured AGN may correspond to a substantial fraction of the supermassive black hole growth rate. I will present new surveys with the SCUBA-2 instrument on the James Clerk Maxwell Telescope of the Chandra Deep Fields and discuss whether we can distinguish obscured AGN in hard X-ray and radio selected samples using submillimeter observations.


2011 ◽  
Vol 737 (2) ◽  
pp. 50 ◽  
Author(s):  
Marta Volonteri ◽  
Priyamvada Natarajan ◽  
Kayhan Gültekin

2019 ◽  
Vol 489 (1) ◽  
pp. 802-819 ◽  
Author(s):  
Angelo Ricarte ◽  
Michael Tremmel ◽  
Priyamvada Natarajan ◽  
Thomas Quinn

ABSTRACT We study the link between supermassive black hole growth and the stellar mass assembly of their host galaxies in the state-of-the-art Romulus suite of simulations. The cosmological simulations Romulus25 and RomulusC employ innovative recipes for the seeding, accretion, and dynamics of black holes in the field and cluster environments, respectively. We find that the black hole accretion rate traces the star formation rate among star-forming galaxies. This result holds for stellar masses between 108 and 1012 solar masses, with a very weak dependence on host halo mass or redshift. The inferred relation between accretion rate and star formation rate does not appear to depend on environment, as no difference is seen in the cluster/proto-cluster volume compared to the field. A model including the star formation rate, the black hole-to-stellar mass ratio, and the cold gas fraction can explain about 70 per cent of all variations in the black hole accretion rate among star-forming galaxies. Finally, bearing in mind the limited volume and resolution of these cosmological simulations, we find no evidence for a connection between black hole growth and galaxy mergers, on any time-scale and at any redshift. Black holes and their galaxies assemble in tandem in these simulations, regardless of the larger scale intergalactic environment, suggesting that black hole growth simply follows star formation on galactic scales.


2016 ◽  
Vol 819 (2) ◽  
pp. 123 ◽  
Author(s):  
Hagai Netzer ◽  
Caterina Lani ◽  
Raanan Nordon ◽  
Benny Trakhtenbrot ◽  
Paulina Lira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document