scholarly journals HOW IMPORTANT IS THE DARK MATTER HALO FOR BLACK HOLE GROWTH?

2011 ◽  
Vol 737 (2) ◽  
pp. 50 ◽  
Author(s):  
Marta Volonteri ◽  
Priyamvada Natarajan ◽  
Kayhan Gültekin
2002 ◽  
Vol 569 (1) ◽  
pp. 83-90 ◽  
Author(s):  
J. D. MacMillan ◽  
R. N. Henriksen

2020 ◽  
Vol 500 (2) ◽  
pp. 2177-2187 ◽  
Author(s):  
A Cruz ◽  
A Pontzen ◽  
M Volonteri ◽  
T R Quinn ◽  
M Tremmel ◽  
...  

ABSTRACT Using cosmological hydrodynamic simulations with physically motivated models of supermassive black hole (SMBH) formation and growth, we compare the assembly of Milky Way-mass (Mvir ≈ 7 × 1011 M⊙ at z = 0) galaxies in cold dark matter (CDM) and self-interacting dark matter (SIDM) models. Our SIDM model adopts a constant cross-section of 1 cm2 g−1. We find that SMBH formation is suppressed in the early Universe due to SIDM interactions. SMBH–SMBH mergers are also suppressed in SIDM as a consequence of the lower number of SMBHs formed. Lack of initial merger-driven SMBH growth in turn delays SMBH growth by billions of years in SIDM compared to CDM. Further, we find that this delayed growth suppresses SMBH accretion in the largest progenitors of the main SIDM galaxies during the first 5 Gyr of their evolution. Nonetheless, by z = 0.8 the CDM and SIDM SMBH masses differ only by around 0.2 dex, so that both remain compatible with the MBH–M* relation. We show that the reduced accretion causes the SIDM SMBHs to less aggressively regulate star formation in their host galaxies than their CDM counterparts, resulting in a factor of 3 or more stars being produced over the lifetime of the SIDM galaxies compared to the CDM galaxies. Our results highlight a new way in which SIDM can affect the growth and merger history of SMBHs and ultimately give rise to very different galaxy evolution compared to the classic CDM model.


2003 ◽  
Vol 593 (1) ◽  
pp. 56-68 ◽  
Author(s):  
Tiziana Di Matteo ◽  
Rupert A. C. Croft ◽  
Volker Springel ◽  
Lars Hernquist

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Marc S. Seigar

We investigate the dark matter halo density profile of M33. We find that the HI rotation curve of M33 is best described by an NFW dark matter halo density profile model, with a halo concentration of and a virial mass of . We go on to use the NFW concentration of M33, along with the values derived for other galaxies (as found in the literature), to show that correlates with both spiral arm pitch angle and supermassive black hole mass.


2007 ◽  
Vol 3 (S245) ◽  
pp. 63-66 ◽  
Author(s):  
T. J. Cox ◽  
J. Younger ◽  
L. Hernquist ◽  
P. F. Hopkins

AbstractThe hierarchical formation of structure suggests that dark halos, and the galaxies they host, are shaped by their merging history. While the idea that mergers between galaxies of equal mass, i.e., major merger, produce elliptical galaxies has received considerable attention, he galaxies that result from minor merger, i.e., mergers between galaxies with a large mass ratio, is much less understood. We have performed a large number of numerical simulations of minor mergers, including cooling, star formation, and black hole growth in order to study this process in more detail. This talk will present some preliminary results of this study, and in particular, the morphology and kinematics of minor merger remnants.


2016 ◽  
Vol 458 (2) ◽  
pp. 1402-1416 ◽  
Author(s):  
MaoSheng Liu ◽  
Tiziana Di Matteo ◽  
Yu Feng

2009 ◽  
Vol 5 (S267) ◽  
pp. 273-282
Author(s):  
Andrew King

AbstractI review accretion and outflow in active galactic nuclei. Accreti4on appears to occur in a series of very small-scale, chaotic events, whose gas flows have no correlation with the large-scale structure of the galaxy or with each other. The accreting gas has extremely low specific angular momentum and probably represents only a small fraction of the gas involved in a galaxy merger, which may be the underlying driver.Eddington accretion episodes in AGN must be common in order for the supermassive black holes to grow. I show that they produce winds with velocities v ~ 0.1c and ionization parameters implying the presence of resonance lines of helium-like and hydrogen-like iron. The wind creates a strong cooling shock as it interacts with the interstellar medium of the host galaxy, and this cooling region may be observable in an inverse Compton continuum and lower-excitation emission lines associated with lower velocities. The shell of matter swept up by the shocked wind stalls unless the black hole mass has reached the value Mσ implied by the M–σ relation. Once this mass is reached, further black hole growth is prevented. If the shocked gas did not cool as asserted above, the resulting (“energy-driven”) outflow would imply a far smaller SMBH mass than actually observed. Minor accretion events with small gas fractions can produce galaxy-wide outflows, including fossil outflows in galaxies where there is little current AGN activity.


Sign in / Sign up

Export Citation Format

Share Document