scholarly journals Phase-space mass bound for fermionic dark matter from dwarf spheroidal galaxies

2018 ◽  
Vol 475 (4) ◽  
pp. 5385-5397 ◽  
Author(s):  
Chiara Di Paolo ◽  
Fabrizio Nesti ◽  
Francesco L Villante
2020 ◽  
Vol 501 (1) ◽  
pp. 1188-1201
Author(s):  
James Alvey ◽  
Nashwan Sabti ◽  
Victoria Tiki ◽  
Diego Blas ◽  
Kyrylo Bondarenko ◽  
...  

ABSTRACT Dwarf spheroidal galaxies are excellent systems to probe the nature of fermionic dark matter due to their high observed dark matter phase-space density. In this work, we review, revise, and improve upon previous phase-space considerations to obtain lower bounds on the mass of fermionic dark matter particles. The refinement in the results compared to previous works is realized particularly due to a significantly improved Jeans analysis of the galaxies. We discuss two methods to obtain phase-space bounds on the dark matter mass, one model-independent bound based on Pauli’s principle, and the other derived from an application of Liouville’s theorem. As benchmark examples for the latter case, we derive constraints for thermally decoupled particles and (non-)resonantly produced sterile neutrinos. Using the Pauli principle, we report a model-independent lower bound of $m \ge 0.18\, \mathrm{keV}$ at 68 per cent CL and $m \ge 0.13\, \mathrm{keV}$ at 95 per cent CL. For relativistically decoupled thermal relics, this bound is strengthened to $m \ge 0.59\, \mathrm{keV}$ at 68 per cent CL and $m \ge 0.41\, \mathrm{keV}$ at 95 per cent CL, while for non-resonantly produced sterile neutrinos the constraint is $m \ge 2.80\, \mathrm{keV}$ at 68 per cent CL and $m \ge 1.74\, \mathrm{keV}$ at 95 per cent CL. Finally, the phase-space bounds on resonantly produced sterile neutrinos are compared with complementary limits from X-ray, Lyman α, and big bang nucleosynthesis observations.


2018 ◽  
Vol 98 (4) ◽  
Author(s):  
Sebastian Bergström ◽  
Riccardo Catena ◽  
Andrea Chiappo ◽  
Jan Conrad ◽  
Björn Eurenius ◽  
...  

2017 ◽  
Vol 468 (2) ◽  
pp. 1338-1348 ◽  
Author(s):  
Shu-Rong Chen ◽  
Hsi-Yu Schive ◽  
Tzihong Chiueh

2004 ◽  
Vol 220 ◽  
pp. 365-366
Author(s):  
J. R. Kuhn ◽  
D. Kocevski

A simple and natural explanation for the dynamics and morphology of the Local Group Dwarf Spheroidal galaxies, Draco (Dra) and Ursa Minor (UMi), is that they are weakly unbound stellar systems with no significant dark matter component. A gentle, but persistent, Milky Way (MW) tide has left them in their current kinematic and morphological state (the “parametric tidal excitation”). A new test of a dark matter dominated dS potential follows from a careful observation of the “clumpiness” of the dS stellar surface density.


2019 ◽  
Vol 490 (1) ◽  
pp. 231-242 ◽  
Author(s):  
Manoj Kaplinghat ◽  
Mauro Valli ◽  
Hai-Bo Yu

ABSTRACT We point out an anticorrelation between the central dark matter (DM) densities of the bright Milky Way dwarf spheroidal galaxies (dSphs) and their orbital pericenter distances inferred from Gaia data. The dSphs that have not come close to the Milky Way centre (like Fornax, Carina and Sextans) are less dense in DM than those that have come closer (like Draco and Ursa Minor). The same anticorrelation cannot be inferred for the ultrafaint dSphs due to large scatter, while a trend that dSphs with more extended stellar distributions tend to have lower DM densities emerges with ultrafaints. We discuss how these inferences constrain proposed solutions to the Milky Way’s too-big-to-fail problem and provide new clues to decipher the nature of DM.


Sign in / Sign up

Export Citation Format

Share Document