big bang nucleosynthesis
Recently Published Documents


TOTAL DOCUMENTS

634
(FIVE YEARS 105)

H-INDEX

66
(FIVE YEARS 6)

2022 ◽  
Vol 2022 (01) ◽  
pp. 017
Author(s):  
Adrienne L. Erickcek ◽  
Pranjal Ralegankar ◽  
Jessie Shelton

Abstract The early universe may have contained internally thermalized dark sectors that were decoupled from the Standard Model. In such scenarios, the relic dark thermal bath, composed of the lightest particle in the dark sector, can give rise to an epoch of early matter domination prior to Big Bang Nucleosynthesis, which has a potentially observable impact on the smallest dark matter structures. This lightest dark particle can easily and generically have number-changing self-interactions that give rise to “cannibal” behavior. We consider cosmologies where an initially sub-dominant cannibal species comes to temporarily drive the expansion of the universe, and we provide a simple map between the particle properties of the cannibal species and the key features of the enhanced dark matter perturbation growth in such cosmologies. We further demonstrate that cannibal self-interactions can determine the small-scale cutoff in the matter power spectrum even when the cannibal self-interactions freeze out prior to cannibal domination.


Author(s):  
Arnab Chaudhuri ◽  
Maxim Yu. Khlopov

When the vacuum like energy of the Higgs potential within the standard model undergoes electroweak phase transition, an influx of entropy into the primordial plasma can lead to a significant dilution of frozen out dark matter density that was already present before the onset of the phase transition. The same effect can take place if the early universe was dominated by primordial black holes of small mass, evaporating before the period of Big Bang Nucleosynthesis. In this paper, we calculate the dilution factor for the above-mentioned scenarios.


2021 ◽  
Vol 2021 (12) ◽  
pp. 050
Author(s):  
Hao Fu ◽  
Matteo Lucca ◽  
Silvia Galli ◽  
Elia S. Battistelli ◽  
Deanna C. Hooper ◽  
...  

Abstract Measurements of the cosmic microwave background (CMB) spectral distortions (SDs) will open a new window on the very early universe, providing new information complementary to that gathered from CMB temperature and polarization anisotropies. In this paper, we study their synergy as a function of the characteristics of the considered experiments. In particular, we examine a wide range of sensitivities for possible SD measurements, spanning from FIRAS up to noise levels 1000 times better than PIXIE, and study their constraining power when combined with current or future CMB anisotropy experiments such as Planck or LiteBIRD plus CMB-S4. We consider a number of different cosmological models such as the ΛCDM, as well as its extensions with the running of the scalar spectral index, the decay or the annihilation of dark matter (DM) particles. While upcoming CMB anisotropy experiments will be able to decrease the uncertainties on inflationary parameters such as As and ns by about a factor 2 in the ΛCDM case, we find that an SD experiment 100 times more sensitive than PIXIE (comparable to the proposed Super-PIXIE satellite) could potentially further contribute to constrain these parameters. This is even more significant in the case of the running of the scalar spectral index. Furthermore, as expected, constraints on DM particles decaying at redshifts probed by SDs will improve by orders of magnitude even with an experiment 10 times worse than PIXIE as compared to CMB anisotropies or Big Bang Nucleosynthesis bounds. On the contrary, DM annihilation constraints will not significantly improve over CMB anisotropy measurements. Finally, we forecast the constraints obtainable with sensitivities achievable either from the ground or from a balloon.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Giuseppe Gaetano Luciano

AbstractThe Generalized Uncertainty Principle (GUP) naturally emerges in several quantum gravity models, predicting the existence of a minimal length at Planck scale. Here, we consider the quadratic GUP as a semiclassical approach to thermodynamic gravity and constrain the deformation parameter by using observational bounds from Big Bang Nucleosynthesis and primordial abundances of the light elements $${}^4 He, D, {}^7 Li$$ 4 H e , D , 7 L i . We show that our result fits with most of existing bounds on $$\beta $$ β derived from other cosmological studies.


2021 ◽  
Vol 2021 (12) ◽  
pp. 026
Author(s):  
Gabriela Barenboim ◽  
Nikita Blinov ◽  
Albert Stebbins

Abstract The evolution of the universe prior to Big Bang Nucleosynthesis could have gone through a phase of early matter domination which enhanced the growth of small-scale dark matter structure. If this period was long enough, self-gravitating objects formed prior to reheating. We study the evolution of these dense early halos through reheating. At the end of early matter domination, the early halos undergo rapid expansion and eventually eject their matter. We find that this process washes out structure on scales much larger than naively expected from the size of the original halos. We compute the density profiles of the early halo remnants and use them to construct late-time power spectra that include these non-linear effects. We evolve the resulting power spectrum to estimate the properties of microhalos that would form after matter-radiation equality. Surprisingly, cosmologies with a short period of early matter domination lead to an earlier onset of microhalo formation compared to those with a long period. In either case, dark matter structure formation begins much earlier than in the standard cosmology, with most dark matter bound in microhalos in the late universe.


2021 ◽  
Vol 923 (1) ◽  
pp. 49
Author(s):  
Joseph Moscoso ◽  
Rafael S. de Souza ◽  
Alain Coc ◽  
Christian Iliadis

Abstract Big bang nucleosynthesis (BBN) is the standard model theory for the production of light nuclides during the early stages of the universe, taking place about 20 minutes after the big bang. Deuterium production, in particular, is highly sensitive to the primordial baryon density and the number of neutrino species, and its abundance serves as a sensitive test for the conditions in the early universe. The comparison of observed deuterium abundances with predicted ones requires reliable knowledge of the relevant thermonuclear reaction rates and their corresponding uncertainties. Recent observations reported the primordial deuterium abundance with percent accuracy, but some theoretical predictions based on BBN are in tension with the measured values because of uncertainties in the cross section of the deuterium-burning reactions. In this work, we analyze the S-factor of the D(p,γ)3He reaction using a hierarchical Bayesian model. We take into account the results of 11 experiments, spanning the period of 1955–2021, more than any other study. We also present results for two different fitting functions, a two-parameter function based on microscopic nuclear theory and a four-parameter polynomial. Our recommended reaction rates have a 2.2% uncertainty at 0.8 GK, which is the temperature most important for deuterium BBN. Differences between our rates and previous results are discussed.


2021 ◽  
Vol 2021 (11) ◽  
pp. 017
Author(s):  
Eunseok Hwang ◽  
Dukjae Jang ◽  
Kiwan Park ◽  
Motohiko Kusakabe ◽  
Toshitaka Kajino ◽  
...  

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Raymond T. Co ◽  
Keisuke Harigaya ◽  
Zachary Johnson ◽  
Aaron Pierce

Abstract We show that the rotation of the QCD axion field, aided by B−L violation from supersymmetric R-parity violating couplings, can yield the observed baryon abundance. Strong sphaleron processes transfer the angular momentum of the axion field into a quark chiral asymmetry, which R-parity violating couplings convert to the baryon asymmetry of the Universe. We focus on the case of dimensionless R-parity violating couplings with textures motivated by grand unified theories and comment on more general scenarios. The axion decay constant and mass spectrum of supersymmetric particles are constrained by Big Bang nucleosynthesis, proton decay from the R-parity violation, and successful thermalization of the Peccei-Quinn symmetry breaking field. Axion dark matter may be produced by the axion rotation via the kinetic misalignment mechanism for axion decay constants below 1010 GeV, or by the conventional misalignment mechanism for 1011-12 GeV. The viable parameter region can be probed by proton decay and axion searches. This scenario may also have connections with collider experiments, including searches for long-lived particles, and observations of gravitational waves.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Maíra Dutra ◽  
Vinícius Oliveira ◽  
C. A de S. Pires ◽  
Farinaldo S. Queiroz

Abstract We discuss a model where a mixed warm and hot keV neutrino dark matter rises naturally. We arrange active and sterile neutrinos in the same SU(3)L multiplet, with the lightest sterile neutrino being dark matter. The other two heavy sterile neutrinos, through their out-of-equilibrium decay, contribute both to the dilution of dark matter density and its population, after freeze-out. We show that this model features all ingredients to overcome the overproduction of keV neutrino dark matter, and explore the phenomenological implications for Big Bang Nucleosynthesis and the number of relativistic degrees of freedom.


Sign in / Sign up

Export Citation Format

Share Document