dark matter annihilation
Recently Published Documents


TOTAL DOCUMENTS

535
(FIVE YEARS 101)

H-INDEX

55
(FIVE YEARS 4)

Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1190-1225
Author(s):  
Marius S. Potgieter ◽  
O. P. M. Aslam ◽  
Driaan Bisschoff ◽  
Donald Ngobeni

Global modulation studies with comprehensive numerical models contribute meaningfully to the refinement of very local interstellar spectra (VLISs) for cosmic rays. Modulation of positrons and anti-protons are investigated to establish how the ratio of their intensity, and with respect to electrons and protons, are changing with solar activity. This includes the polarity reversal of the solar magnetic field which creates a 22-year modulation cycle. Modeling illustrates how they are modulated over time and the particle drift they experience which is significant at lower kinetic energy. The VLIS for anti-protons has a peculiar spectral shape in contrast to protons so that the total modulation of anti-protons is awkwardly different to that for protons. We find that the proton-to-anti-proton ratio between 1–2 GeV may change by a factor of 1.5 over a solar cycle and that the intensity for anti-protons may decrease by a factor of ~2 at 100 MeV during this cycle. A composition is presented of VLIS for protons, deuteron, helium isotopes, electrons, and particularly for positrons and anti-protons. Gaining knowledge of their respective 11 and 22 year modulation is useful to interpret observations of low-energy anti-nuclei at the Earth as tests of dark matter annihilation.


2021 ◽  
Author(s):  
Xiaojun Bi

Abstract In order to reveal the nature of dark matter, it is crucial to detect its non-gravitational interactions with the standard model particles. The traditional dark matter searches focused on the so-called weakly interacting massive particles. However, this paradigm is strongly constrained by the null results of current experiments with high precision. Therefore there is a renewed interest of searches for heavy dark matter particles above TeV scale. The Large High Altitude Air Shower Observatory (LHAASO) with large effective area and strong background rejection power is very suitable to investigate the gamma-ray signals induced by dark matter annihilation or decay above TeV scale. In this document, we review the theoretical motivations and background of heavy dark matter. We review the prospects of searching for the gamma-ray signals resulted from dark matter in the dwarf spheroidal satellites and Galactic halo for LHAASO, and present the projected sensitivities. We also review the prospects of searching for the axion-like particles, which are a kind of well motivated light pseudo-scalars, through the LHAASO measurement of the very high energy gamma-ray spectra of astrophysical sources.


2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Nolan Smyth ◽  
Gabriela Huckabee ◽  
Stefano Profumo

2021 ◽  
Vol 2021 (12) ◽  
pp. 007
Author(s):  
Isabelle John ◽  
Tim Linden

Abstract Cosmic-ray positrons have long been considered a powerful probe of dark matter annihilation. In particular, myriad studies of the unexpected rise in the positron fraction have debated its dark matter or pulsar origins. In this paper, we instead examine the potential for extremely precise positron measurements by AMS-02 to probe hard leptophilic dark matter candidates that do not have spectral features similar to the bulk of the observed positron excess. Utilizing a detailed cosmic-ray propagation model that includes a primary positron flux generated by Galactic pulsars in addition to a secondary component constrained by He and proton measurements, we produce a robust fit to the local positron flux and spectrum. We find no evidence for a spectral bump correlated with leptophilic dark matter, and set strong constraints on the dark matter annihilation cross-section that fall below the thermal annihilation cross-section for dark matter masses below 60 GeV and 380 GeV for annihilation into τ+τ- and e+e-, respectively, in our default model.


2021 ◽  
Vol 2021 (12) ◽  
pp. 037
Author(s):  
Felix Kahlhoefer ◽  
Michael Korsmeier ◽  
Michael Krämer ◽  
Silvia Manconi ◽  
Kathrin Nippel

Abstract The interpretation of data from indirect detection experiments searching for dark matter annihilations requires computationally expensive simulations of cosmic-ray propagation. In this work we present a new method based on Recurrent Neural Networks that significantly accelerates simulations of secondary and dark matter Galactic cosmic ray antiprotons while achieving excellent accuracy. This approach allows for an efficient profiling or marginalisation over the nuisance parameters of a cosmic ray propagation model in order to perform parameter scans for a wide range of dark matter models. We identify importance sampling as particularly suitable for ensuring that the network is only evaluated in well-trained parameter regions. We present resulting constraints using the most recent AMS-02 antiproton data on several models of Weakly Interacting Massive Particles. The fully trained networks are released as DarkRayNet together with this work and achieve a speed-up of the runtime by at least two orders of magnitude compared to conventional approaches.


2021 ◽  
Vol 2021 (12) ◽  
pp. 015
Author(s):  
Masahiro Kawasaki ◽  
Hiromasa Nakatsuka ◽  
Kazunori Nakayama ◽  
Toyokazu Sekiguchi

Abstract The precision measurements of the cosmic microwave background power spectrum put a strong constraint on the dark matter annihilation cross section since the electromagnetic energy injection by the dark matter annihilation affects the ionization history of the universe. In this paper, we update our previous simulation code for calculating the ionization history with the effect of dark matter annihilation by including Helium interactions and improving the precision of calculations. We give an updated constraint on the annihilation cross section and mass of dark matter using the modified RECFAST code with the Planck 2018 datasets.


2021 ◽  
Vol 2021 (12) ◽  
pp. 034
Author(s):  
Lu Chen ◽  
Ke Wang

Abstract If dark matter decay or annihilate, a large amount of energy and particles would be released into the cosmic plasma. Therefore, they could modify the thermal and ionization history of our universe, then leave footprints on the cosmic microwave background power spectra. In this paper, we take dark matter annihilation as an example and investigate whether different reionization models influence the constraints on dark matter annihilation. We consider the ionization history including both dark matter annihilation and star formation, then put constraints on DM annihilation. Combining the latest Planck data, BAO data, SNIa measurement, Q HII constraints from observations of quasars, as well as the star formation rate density from UV and IR data, the optical depth is τ = 0.0571+0.0005 -0.0006 at 68%C.L. and the upper limit of ϵ0 f d reads 2.7765 × 10-24 at 95%C.L.. By comparison, we also constrain dark matter annihilation in the instantaneous reionization model from the same data combination except the Q HII constraints and star formation rate density. We get τ = 0.0559+0.0069 -0.0076 at 68%C.L. and the upper limit of ϵ0 f d is 2.8468 × 10-24 at 95%C.L.. This indicates various reionization models have little influence (≲ 2.5%) on constraining parameters of dark matter decay or annihilation.


Author(s):  
Idham Syah Alam

Abstract We investigate a left-right mirror model with SU(3)c×SU(2)L×SU(2)R×U(1)Y and a discrete Z2 symmetry, which introduces mirror fields that are copies of the standard model fields. The mirror fields have the opposite chirality to their standard model counterpart fields. We also introduce singlet scalars as dark matter. The new interaction between dark matter, standard model fermions, and mirror fermions can account for dark matter abundance, charged lepton flavor violation, lepton anomalous magnetic moment, and flavor changing neutral current. We demonstrated that if we choose dark matter annihilation into muon as the dominant annihilation channel for leptophilic dark matter, both the observed dark matter abundance and the observed discrepancy between theory and experiment in the muon anomalous magnetic moment can be explained without contradicting the bound derived from charged lepton flavor violating processes. We briefly discuss how mirror fermions will be produced at the future linear collider, as mirror fermions can interact with neutral gauge bosons in this model. Finally, we discuss the lightest mirror neutrino decay mechanism, which will be highly abundant if stable.


2021 ◽  
Vol 2021 (11) ◽  
pp. 033
Author(s):  
Nestor Mirabal ◽  
Ana Bonaca

Abstract The detection of dark matter subhalos without a stellar component in the Galactic halo remains a challenge. We use supervised machine learning to identify high-latitude gamma-ray sources with dark matter-like spectra among unassociated gamma-ray sources in the 4FGL-DR2. Out of 843 4FGL-DR2 unassociated sources at |b| ≥ 10°, we select 73 dark matter subhalo candidates. Of the 69 covered by the Neil Gehrels Swift Observatory (Swift), 17 show at least one X-ray source within the 95% LAT error ellipse and 52 where we identify no new sources. This latest inventory of dark subhalos candidates allows us to investigate the possible dark matter substructure responsible for the perturbation in the GD-1 stellar stream. In particular, we examine the possibility that the alleged GD-1 dark subhalo may appear as a 4FGL-DR2 gamma-ray source from dark matter annihilation into Standard Model particles.


Sign in / Sign up

Export Citation Format

Share Document