scholarly journals Gamma-ray emission from middle-aged supernova remnants interacting with molecular clouds: the challenge for current models

2018 ◽  
Vol 482 (3) ◽  
pp. 3843-3856 ◽  
Author(s):  
Xiaping Tang
2012 ◽  
Vol 745 (2) ◽  
pp. 140 ◽  
Author(s):  
Huirong Yan ◽  
A. Lazarian ◽  
R. Schlickeiser

2018 ◽  
Vol 614 ◽  
pp. L1 ◽  
Author(s):  
A. Lähteenmäki ◽  
E. Järvelä ◽  
V. Ramakrishnan ◽  
M. Tornikoski ◽  
J. Tammi ◽  
...  

We have detected six narrow-line Seyfert 1 (NLS1) galaxies at 37 GHz that were previously classified as radio silent and two that were classified as radio quiet. These detections reveal the presumption that NLS1 galaxies labelled radio quiet or radio silent and hosted by spiral galaxies are unable to launch jets to be incorrect. The detections are a plausible indicator of the presence of a powerful, most likely relativistic jet because this intensity of emission at 37 GHz cannot be explained by, for example, radiation from supernova remnants. Additionally, one of the detected NLS1 galaxies is a newly discovered source of gamma rays and three others are candidates for future detections.


2007 ◽  
Vol 666 (1) ◽  
pp. 247-260 ◽  
Author(s):  
L. Zhang ◽  
J. Fang

Author(s):  
Ken Makino ◽  
Yutaka Fujita ◽  
Kumiko K Nobukawa ◽  
Hironori Matsumoto ◽  
Yutaka Ohira

Abstract Recent discovery of the X-ray neutral iron line (Fe  i Kα at 6.40 keV) around several supernova remnants (SNRs) show that MeV cosmic-ray (CR) protons are distributed around the SNRs and are interacting with neutral gas there. We propose that these MeV CRs are the ones that have been accelerated at the SNRs together with GeV–TeV CRs. In our analytical model, the MeV CRs are still confined in the SNR when the SNR collides with molecular clouds. After the collision, the MeV CRs leak into the clouds and produce the neutral iron line emissions. On the other hand, GeV–TeV CRs had already escaped from the SNRs and emitted gamma-rays through interaction with molecular clouds surrounding the SNRs. We apply this model to the SNRs W 28 and W 44 and show that it can reproduce the observations of the iron line intensities and the gamma-ray spectra. This could be additional support of the hadronic scenario for the gamma-ray emissions from these SNRs.


2019 ◽  
Vol 490 (3) ◽  
pp. 4317-4333 ◽  
Author(s):  
S Celli ◽  
G Morlino ◽  
S Gabici ◽  
F A Aharonian

ABSTRACT The escape process of particles accelerated at supernova remnant (SNR) shocks is one of the poorly understood aspects of the shock acceleration theory. Here we adopt a phenomenological approach to study the particle escape and its impact on the gamma-ray spectrum resulting from hadronic collisions both inside and outside of a middle-aged SNR. Under the assumption that in the spatial region immediately outside of the remnant the diffusion coefficient is suppressed with respect to the average Galactic one, we show that a significant fraction of particles are still located inside the SNR long time after their nominal release from the acceleration region. This fact results into a gamma-ray spectrum that resembles a broken power law, similar to those observed in several middle-aged SNRs. Above the break, the spectral steepening is determined by the diffusion coefficient outside of the SNR and by the time dependence of maximum energy. Consequently, the comparison between the model prediction and actual data will contribute to determining these two quantities, the former being particularly relevant within the predictions of the gamma-ray emission from the halo of escaping particles around SNRs, which could be detected with future Cherenkov telescope facilities. We also calculate the spectrum of runaway particles injected into the Galaxy by an individual remnant. Assuming that the acceleration stops before the SNR enters the snowplow phase, we show that the released spectrum can be a featureless power law only if the accelerated spectrum is ∝ p−α with α > 4.


Sign in / Sign up

Export Citation Format

Share Document