shock acceleration
Recently Published Documents


TOTAL DOCUMENTS

457
(FIVE YEARS 83)

H-INDEX

52
(FIVE YEARS 5)

2022 ◽  
Vol 924 (1) ◽  
pp. 18
Author(s):  
Wonki Lee ◽  
M. James Jee ◽  
Kyle Finner ◽  
Kim HyeongHan ◽  
Ruta Kale ◽  
...  

Abstract We report a discovery of a double radio relic in the cluster merger ZwCl1447.2+2619 (z = 0.376) with uGMRT observations at 420 MHz and 700 MHz. The linear sizes of the northern and southern relics are ∼0.3 Mpc and ∼1.2 Mpc, respectively, which is consistent with the theoretical expectation that a larger relic is produced in the less massive subcluster side. However, ZwCl1447.2+2619 is unlike other known double radio relic systems, where the larger relics are much more luminous by several factors. In this merger, the higher surface brightness of the smaller northern relic makes its total radio luminosity comparable to that of the much larger southern relic. The surface brightness ratio ∼0.1 between the two radio relics differs significantly from the relation observed in other double radio relic systems. From our radio spectral analysis, we find that both relics signify similar weak shocks with Mach numbers of 2.9 ± 0.8 and 2.0 ± 0.7 for the northern and southern relics, respectively. Moreover, the northern relic is connected to a discrete radio source with an optical counterpart, which indicates the possible presence of cosmic-ray injection and reacceleration. Therefore, we propose that this atypical surface brightness ratio can be explained with the particle acceleration efficiency precipitously dropping in the weak shock regime and/or with reacceleration of fossil cosmic rays. Our multi-wavelength analysis and numerical simulation suggest that ZwCl1447.2+2619 is a postmerger, which has experienced a near head-on collision ∼0.7 Gyr ago.


2021 ◽  
Vol 923 (1) ◽  
pp. 80
Author(s):  
Shanwlee Sow Mondal ◽  
Aveek Sarkar ◽  
Bhargav Vaidya ◽  
Andrea Mignone

Abstract Interplanetary coronal mass ejection (ICME) shocks are known to accelerate particles and contribute significantly to solar energetic particle events. We have performed magnetohydrodynamic-particle in cell simulations of ICME shocks to understand the acceleration mechanism. These shocks vary in Alfvénic Mach numbers as well as in magnetic field orientations (parallel and quasi-perpendicular). We find that diffusive shock acceleration plays a significant role in accelerating particles in a parallel ICME shock. In contrast, shock drift acceleration (SDA) plays a pivotal role in a quasi-perpendicular shock. High-Mach shocks are seen to accelerate particles more efficiently. Our simulations suggest that background turbulence and local particle velocity distribution around the shock can indirectly hint at the acceleration mechanism. Our results also point toward a few possible in situ observations that could validate our understanding of the topic.


Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1112-1122
Author(s):  
Markus Böttcher

Reinhard Schlickeiser has made groundbreaking contributions to various aspects of blazar physics, including diffusive shock acceleration, the theory of synchrotron radiation, the production of gamma-rays through Compton scattering in various astrophysical sources, etc. This paper, describing the development of a self-consistent shock-in-jet model for blazars with a synchrotron mirror feature, is therefore an appropriate contribution to a Special Issue in honor of Reinhard Schlickeiser’s 70th birthday. The model is based on our previous development of a self-consistent shock-in-jet model with relativistic thermal and non-thermal particle distributions evaluated via Monte-Carlo simulations of diffusive shock acceleration, and time-dependent radiative transport. This model has been very successful in modeling spectral variability patterns of several blazars, but has difficulties describing orphan flares, i.e., high-energy flares without a significant counterpart in the low-frequency (synchrotron) radiation component. As a solution, this paper investigates the possibility of a synchrotron mirror component within the shock-in-jet model. It is demonstrated that orphan flares result naturally in this scenario. The model’s applicability to a recently observed orphan gamma-ray flare in the blazar 3C279 is discussed and it is found that only orphan flares with mild (≲ a factor of 2–3) enhancements of the Compton dominance can be reproduced in a synchrotron-mirror scenario, if no additional parameter changes are invoked.


2021 ◽  
Vol 922 (1) ◽  
pp. 56
Author(s):  
K. Jiang ◽  
S. Y. Huang ◽  
H. S. Fu ◽  
Z. G. Yuan ◽  
X. H. Deng ◽  
...  

Abstract Electron heating/acceleration in the foreshock, by which electrons may be energized beyond thermal energies prior to encountering the bow shock, is very important for the bow shock dynamics. And then these electrons would be more easily injected into a process like diffusive shock acceleration. Many mechanisms have been proposed to explain electrons heating/acceleration in the foreshock. Magnetic reconnection is one possible candidate. Taking advantage of the Magnetospheric Multiscale mission, we present two magnetic reconnection events in the dawnside and duskside ion foreshock region, respectively. Super-Alfvénic electron outflow, demagnetization of the electrons and the ions, and crescent electron distributions in the plane perpendicular to the magnetic field are observed in the sub-ion-scale current sheets. Moreover, strong energy conversion from the fields to the plasmas and significant electron temperature enhancement are observed. Our observations provide direct evidence that magnetic reconnection could occur in the foreshock region and heat/accelerate the electrons therein.


2021 ◽  
Vol 922 (1) ◽  
pp. 1
Author(s):  
Rebecca Diesing ◽  
Damiano Caprioli

Abstract Galactic cosmic rays (CRs) are accelerated at the forward shocks of supernova remnants (SNRs) via diffusive shock acceleration (DSA), an efficient acceleration mechanism that predicts power-law energy distributions of CRs. However, observations of nonthermal SNR emission imply CR energy distributions that are generally steeper than E −2, the standard DSA prediction. Recent results from kinetic hybrid simulations suggest that such steep spectra may arise from the drift of magnetic structures with respect to the thermal plasma downstream of the shock. Using a semi-analytic model of nonlinear DSA, we investigate the implications that these results have on the phenomenology of a wide range of SNRs. By accounting for the motion of magnetic structures in the downstream, we produce CR energy distributions that are substantially steeper than E −2 and consistent with observations. Our formalism reproduces both modestly steep spectra of Galactic SNRs (∝E −2.2) and the very steep spectra of young radio supernovae (∝E −3).


2021 ◽  
Vol 28 (11) ◽  
pp. 113102
Author(s):  
J. Bonvalet ◽  
P. Loiseau ◽  
J.-R. Marquès ◽  
E. Atukpor ◽  
E. d'Humières ◽  
...  

2021 ◽  
Vol 508 (1) ◽  
pp. 1321-1345
Author(s):  
Vincent Tatischeff ◽  
John C Raymond ◽  
Jean Duprat ◽  
Stefano Gabici ◽  
Sarah Recchia

ABSTRACT Galactic cosmic rays (GCRs) are thought to be accelerated in strong shocks induced by massive star winds and supernova explosions sweeping across the interstellar medium. But the phase of the interstellar medium from which the CRs are extracted has remained elusive until now. Here, we study in detail the GCR source composition deduced from recent measurements by the AMS-02, Voyager 1, and SuperTIGER experiments to obtain information on the composition, ionization state, and dust content of the GCR source reservoirs. We show that the volatile elements of the CR material are mainly accelerated from a plasma of temperature ≳ 2 MK, which is typical of the hot medium found in Galactic superbubbles energized by the activity of massive star winds and supernova explosions. Another GCR component, which is responsible for the overabundance of 22Ne, most likely arises from acceleration of massive star winds in their termination shocks. From the CR-related gamma-ray luminosity of the Milky Way, we estimate that the ion acceleration efficiency in both supernova shocks and wind termination shocks is of the order of 10−5. The GCR source composition also shows evidence for a preferential acceleration of refractory elements contained in interstellar dust. We suggest that the GCR refractories are also produced in superbubbles, from shock acceleration and subsequent sputtering of dust grains continuously incorporated into the hot plasma through thermal evaporation of embedded molecular clouds. Our model explains well the measured abundances of all primary and mostly primary CRs from H to Zr, including the overabundance of 22Ne.


Author(s):  
C Simon Jeffery ◽  
Pilar Montañés-Rodríguez ◽  
Hideyuki Saio

Abstract New non-linear hydrodynamic models have been constructed to simulate the radial pulsations observed in the extreme helium star V652 Her. These use a finer zoning to allow higher radial resolution than in previous simulations. Models incorporate updated OPAL and OP opacity tables and adopt a composition based on the best atmospheric analyses to date. Key pulsation properties including period, velocity amplitude and shock acceleration are examined as a function of the mean stellar parameters (mass, luminosity, and effective temperature). The new models confirm that, for large amplitude pulsations, a strong shock develops at minimum radius, and is associated with a large phase delay between maximum brightness and minimum radius. Using the observed pulsation period to constrain parameter space in one dimension, other pulsation properties are used to constrain the model space further, and to critically discuss observational measurements. Similar models may be useful for the interpretation of other blue large amplitude pulsators, which may also exhibit pulsation-driven shocks.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 998
Author(s):  
Guanjun Xu ◽  
Dongdong Jiao ◽  
Long Chen ◽  
Linbo Zhang ◽  
Jun Liu ◽  
...  

Ultra-stable optical cavities (USOCs) as fragile precision instruments have many important applications in space. In order to protect them from being damaged during a rocket launch, we analyzed a USOC by means of finite element methodology. The shock acceleration limits that the USOC can withstand in different directions and under various conditions are given. To increase the shock acceleration limit, the midplane thickness and the fixed hole diameter should be selected to be as high as possible. It is worth noting that the launch direction of the USOC should be selected as the horizontal direction, for which the shock acceleration limit that the USOC can withstand is approximately two times that of the vertical direction. In this paper, results provide guidance for the design of USOCs for space applications, especially the design to prevent the damage caused by a shock. The method could then be applied to other space optical cavities, providing a tool to improve the effect of shock at high accelerations.


2021 ◽  
Vol 217 (6) ◽  
Author(s):  
Donald V. Reames

AbstractSixty years ago the first observation was published showing solar energetic particles (SEPs) with a sampling of chemical elements with atomic numbers $6 \leq Z \leq 18$ 6 ≤ Z ≤ 18 above 40 MeV amu−1. Thus began study of the direct products of dynamic physics in the solar corona. As we have progressed from 4-min sounding-rocket samples to continuous satellite coverage of SEP events, we have extended the observations to the unusual distribution of element abundances throughout the periodic table. Small “impulsive” SEP events from islands of magnetic reconnection on open magnetic-field lines in solar jets generate huge enhancements in abundances of 3He and of the heaviest elements, enhancements increasing as a power of the ion mass-to-charge ratio as ($A$ A /$Q$ Q )3.6, on average. Solar flares involve the same physics but there the SEPs are trapped on closed loops, expending their energy as heat and light. The larger, energetic “gradual” SEP events are accelerated at shock waves driven by fast, wide coronal mass ejections (CMEs). However, these shocks can also reaccelerate ions from pools of residual suprathermal impulsive ions, and CMEs from jets can also drive fast shocks, complicating the picture. The underlying element abundances in SEP events represent the solar corona, which differs from corresponding abundances in the photosphere as a function of the first ionization potential (FIP) of the elements, distinguishing low-FIP (<10 eV) ions from high-FIP neutral atoms as they expand through the chromosphere. Differences in FIP patterns of SEPs and the solar wind may distinguish closed- and open-field regions of formation at the base of the corona. Dependence of SEP acceleration upon $A$ A /$Q$ Q allows best-fit estimation of ion $Q$ Q -values and hence of the source plasma temperature of ∼1 – 3 MK, derived from abundances, which correlates with recent measures of temperatures using extreme ultraviolet emission from jets. Thus, element abundances in SEPs have become a powerful tool to study the underlying solar corona and to probe physical processes of broad astrophysical significance, from the “FIP effect” to magnetic reconnection and shock acceleration. New questions arise, however, about the theoretical basis of correlations of energy-spectral indices with power-laws of abundances, about the coexistence of separate resonant and non-resonant mechanisms for enhancements of 3He and of heavy elements, about occasional events with unusual suppression of He and about the overall paucity of C in FIP comparisons.


Sign in / Sign up

Export Citation Format

Share Document