scholarly journals The assembly of a spliceosomal small nuclear ribonucleoprotein particle

2008 ◽  
Vol 36 (20) ◽  
pp. 6482-6493 ◽  
Author(s):  
S. B. Patel ◽  
M. Bellini
1990 ◽  
Vol 10 (9) ◽  
pp. 4480-4485
Author(s):  
J Andersen ◽  
R J Feeney ◽  
G W Zieve

The addition of urea to sodium dodecyl sulfate (SDS)-polyacrylamide gels has allowed the identification and characterization of the small nuclear ribonucleoprotein particle (snRNP) D' protein and has also improved resolution of the E, F, and G snRNP core proteins. In standard SDS-polyacrylamide gels, the D' and D snRNP core proteins comigrate at approximately 16 kilodaltons. The addition of urea to the separating gel caused the D' protein to shift to a slower electrophoretic mobility that is distinct from that of the D protein. The shift to a slower electrophoretic mobility in the presence of urea suggests that the D' protein has extensive secondary structure that is not totally disrupted by SDS alone. Both N-terminal sequencing and partial peptide maps indicate that the D and D' proteins are distinct gene products, and the sequence data have identified the faster moving of the two proteins as the previously cloned D protein (L. A. Rokeach, J. A. Haselby, and S. O. Hoch, Proc. Natl. Acad. Sci. USA 85:4832-4836, 1988). In the cytoplasm, the D protein is found primarily in the small-nuclear-RNA-free 6S protein complexes, while the D' protein is found primarily in the 20S protein complexes. Like the D protein, the D' protein is an autoantigen in patients with systemic lupus erythematosus and is recognized by some of the Sm class of autoimmune antisera.


1989 ◽  
Vol 9 (9) ◽  
pp. 3710-3719
Author(s):  
J Banroques ◽  
J N Abelson

The Saccharomyces cerevisiae prp mutants (prp2 through prp11) are known to be defective in pre-mRNA splicing at nonpermissive temperatures. We have sequenced the PRP4 gene and shown that it encodes a 52-kilodalton protein. We obtained PRP4 protein-specific antibodies and found that they inhibited in vitro pre-mRNA splicing, which confirms the essential role of PRP4 in splicing. Moreover, we found that PRP4 is required early in the spliceosome assembly pathway. Immunoprecipitation experiments with anti-PRP4 antibodies were used to demonstrate that PRP4 is a protein of the U4/U6 small nuclear ribonucleoprotein particle (snRNP). Furthermore, the U5 snRNP could be immunoprecipitated through snRNP-snRNP interactions in the large U4/U5/U6 complex.


1993 ◽  
Vol 13 (5) ◽  
pp. 2959-2970
Author(s):  
D S Horowitz ◽  
J Abelson

The PRP18 gene, which had been identified in a screen for pre-mRNA splicing mutants in Saccharomyces cerevisiae, has been cloned and sequenced. Yeast strains bearing only a disrupted copy of PRP18 are temperature sensitive for growth; even at a low temperature, they grow extremely slowly and do not splice pre-mRNA efficiently. This unusual temperature sensitivity can be reproduced in vitro; extracts immunodepleted of PRP18 are temperature sensitive for the second step of splicing. The PRP18 protein has been overexpressed in active form in Escherichia coli and has been purified to near homogeneity. Antibodies directed against PRP18 precipitate the U4/U5/U6 small nuclear ribonucleoprotein particle (snRNP) from yeast extracts. From extracts depleted of the U6 small nuclear RNA (snRNA), the U4 and U5 snRNAs can be immunoprecipitated, while no snRNAs can be precipitated from extracts depleted of the U5 snRNA. PRP18 therefore appears to be primarily associated with the U5 snRNP. The antibodies against PRP18 inhibit the second step of pre-mRNA splicing in vitro. Together, these results imply that the U5 snRNP plays a role in the second step of splicing and suggest a model for the action of PRP18.


1989 ◽  
Vol 9 (8) ◽  
pp. 3360-3368 ◽  
Author(s):  
J R Patton ◽  
W Habets ◽  
W J van Venrooij ◽  
T Pederson

The U1 small nuclear ribonucleoprotein particle (U1 snRNP), a cofactor in pre-mRNA splicing, contains three proteins, termed 70K, A, and C, that are not present in the other spliceosome-associated snRNPs. We studied the binding of the A and C proteins to U1 RNA, using a U1 snRNP reconstitution system and an antibody-induced nuclease protection technique. Antibodies that reacted with the A and C proteins induced nuclease protection of the first two stem-loops of U1 RNA in reconstituted U1 snRNP. Detailed analysis of the antibody-induced nuclease protection patterns indicated the existence of relatively long-range protein-protein interactions in the U1 snRNP, with the 5' end of U1 RNA and its associated specific proteins interacting with proteins bound to the Sm domain near the 3' end. UV cross-linking experiments in conjunction with an A-protein-specific antibody demonstrated that the A protein bound directly to the U1 RNA rather than assembling in the U1 snRNP exclusively via protein-protein interactions. This conclusion was supported by additional experiments revealing that the A protein could bind to U1 RNA in the absence of bound 70K and Sm core proteins.


1990 ◽  
Vol 10 (12) ◽  
pp. 6417-6425 ◽  
Author(s):  
N Abovich ◽  
P Legrain ◽  
M Rosbash

PRP6 and PRP9 are two yeast genes involved in pre-mRNA splicing. Incubation at 37 degrees C of strains that carry temperature-sensitive mutations at these loci inhibits splicing, and in vivo experiments suggested that they might be involved in commitment complex formation (P. Legrain and M. Rosbash, Cell 57:573-583, 1989). To examine the specific role that the PRP6 and PRP9 products may play in splicing or pre-mRNA transport to the cytoplasm, we have characterized in vitro splicing and spliceosome assembly in extracts derived from prp6 and prp9 mutant strains. We have also characterized RNAs that are specifically immunoprecipitated with the PRP6 and PRP9 proteins. Both approaches indicate that PRP6 encodes a U4/U6 small nuclear ribonucleoprotein particle (snRNP) protein and that the PRP9 protein is required for a stable U2 snRNP-substrate interaction. The results are discussed with reference to the previously observed in vivo phenotypes of these mutants.


Sign in / Sign up

Export Citation Format

Share Document