combinatorial libraries
Recently Published Documents


TOTAL DOCUMENTS

1176
(FIVE YEARS 77)

H-INDEX

81
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Adrien Laroche ◽  
Maria Lucia Orsini Delgado ◽  
Philippe Cuniasse ◽  
Steven Dubois ◽  
Raphael Sierocki ◽  
...  

We report in this study the molecular engineering of nanobodies that bind with picomolar affinity to both SARS-CoV-1 and SARS-CoV-2 Receptor Binding Domains (RBD) and are highly neutralizing. We applied Deep Mutational Engineering to VHH72, a nanobody initially specific for SARS-CoV-1 RBD with little cross-reactivity to SARS-CoV-2 antigen. We first identified all the individual VHH substitutions that increase binding to SARS-CoV-2 RBD and then screened highly focused combinatorial libraries to isolate engineered nanobodies with improved properties. The corresponding VHH-Fc molecules show high affinities for SARS-CoV-2 antigens from various emerging variants and SARS-CoV-1, block the interaction between ACE2 and RBD and neutralize the virus with high efficiency. Its rare specificity across sarbecovirus relies on its peculiar epitope outside the immunodominant regions. The engineered nanobodies share a common motif of three amino acids, which contribute to the broad specificity of recognition. These nanobodies appears as promising therapeutic candidates to fight SARS-CoV-2 infection.


Author(s):  
Maximilian Otto ◽  
Christos Skrekas ◽  
Michael Gossing ◽  
Johan Gustafsson ◽  
Verena Siewers ◽  
...  

2021 ◽  
Vol 89 (4) ◽  
pp. 44
Author(s):  
Boris D. Bekono ◽  
Akori E. Esmel ◽  
Brice Dali ◽  
Fidele Ntie-Kang ◽  
Melalie Keita ◽  
...  

In this work, antiparasitic peptidomimetics inhibitors (PEP) of falcipain-3 (FP3) of Plasmodium falciparum (Pf) are proposed using structure-based and computer-aided molecular design. Beginning with the crystal structure of PfFP3-K11017 complex (PDB ID: 3BWK), three-dimensional (3D) models of FP3-PEPx complexes with known activities () were prepared by in situ modification, based on molecular mechanics and implicit solvation to compute Gibbs free energies (GFE) of inhibitor-FP3 complex formation. This resulted in a quantitative structure–activity relationships (QSAR) model based on a linear correlation between computed GFE () and the experimentally measured . Apart from the structure-based relationship, a ligand-based quantitative pharmacophore model (PH4) of novel PEP analogues where substitutions were directed by comparative analysis of the active site interactions was derived using the proposed bound conformations of the PEPx. This provided structural information useful for the design of virtual combinatorial libraries (VL), which was virtually screened based on the 3D-QSAR PH4. The end results were predictive inhibitory activities falling within the low nanomolar concentration range.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1218
Author(s):  
Kenneth Rocha ◽  
Jesus Magallon ◽  
Craig Reeves ◽  
Kimberly Phan ◽  
Peter Vu ◽  
...  

The aminoglycoside 6′-N-acetyltransferase type Ib (AAC(6′)-Ib) is a common cause of resistance to amikacin and other aminoglycosides in Gram-negatives. Utilization of mixture-based combinatorial libraries and application of the positional scanning strategy identified an inhibitor of AAC(6′)-Ib. This inhibitor’s chemical structure consists of a pyrrolidine pentamine scaffold substituted at four locations (R1, R3, R4, and R5). The substituents are two S-phenyl groups (R1 and R4), an S-hydroxymethyl group (R3), and a 3-phenylbutyl group (R5). Another location, R2, does not have a substitution, but it is named because its stereochemistry was modified in some compounds utilized in this study. Structure–activity relationship (SAR) analysis using derivatives with different functionalities, modified stereochemistry, and truncations was carried out by assessing the effect of the addition of each compound at 8 µM to 16 µg/mL amikacin-containing media and performing checkerboard assays varying the concentrations of the inhibitor analogs and the antibiotic. The results show that: (1) the aromatic functionalities at R1 and R4 are essential, but the stereochemistry is essential only at R4; (2) the stereochemical conformation at R2 is critical; (3) the hydroxyl moiety at R3 as well as stereoconformation are required for full inhibitory activity; (4) the phenyl functionality at R5 is not essential and can be replaced by aliphatic groups; (5) the location of the phenyl group on the butyl carbon chain at R5 is not essential; (6) the length of the aliphatic chain at R5 is not critical; and (7) all truncations of the scaffold resulted in inactive compounds. Molecular docking revealed that all compounds preferentially bind to the kanamycin C binding cavity, and binding affinity correlates with the experimental data for most of the compounds evaluated. The SAR results in this study will serve as the basis for the design of new analogs in an effort to improve their ability to induce phenotypic conversion to susceptibility in amikacin-resistant pathogens.


2021 ◽  
Vol 143 (36) ◽  
pp. 14845-14854
Author(s):  
Emily E. Harrison ◽  
Benjamin A. Carpenter ◽  
Lauren E. St. Louis ◽  
Alexandria G. Mullins ◽  
Marcey L. Waters

Author(s):  
Kenneth Rocha ◽  
Jesus Magallon ◽  
Craig Reeves ◽  
Kimberly Phan ◽  
Peter Vu ◽  
...  

The aminoglycoside 6′-N-acetyltransferase type Ib [AAC(6′)-Ib] is a common cause of resistance to amikacin and other aminoglycosides in Gram-negatives. Utilization of mixture-based combinatorial libraries and application of the positional scanning strategy identified an inhibitor of AAC(6′)-Ib. This inhibitor’s chemical structure consists of a pyrrolidine pentamine scaffold substituted at four locations (R1, R3, R4, and R5). The substituents are two S-phenyl (R1 and R4), an S-hydroxymethyl (R3), and a 3-phenylbutyl (R5) groups. Another location, R2, does not have a substitution, but it is named because its stereochemistry was modified in some compounds utilized in this study. Structure-activity relationship (SAR) analysis using derivatives with different functionalities, modified stereochemistry, and truncations were carried out by assessing the effect of the addition of each compound at 8 µM to 16 µg/ml amikacin-containing media and performing checkerboard assays varying the concentrations of the inhibitor analogs and the antibiotic. The results showed that: 1) the aromatic functionalities at R1 and R4 are essential, but the stereochemistry is essential only at R4, 2) the stereochemical conformation at R2 is critical, 3) the hydroxyl moiety at R3 as well as stereoconformation are required for full inhibitory activity, 4) the phenyl functionality at R5 is not essential and can be replaced by aliphatic groups, 5) the location of the phenyl group on the butyl carbon chain at R5 is not essential, 6) the length of the aliphatic chain at R5 is not critical, 7) all truncations of the scaffold resulted in inactive compounds. Molecular docking revealed that all compounds preferentially bind to the kanamycin C binding cavity, and binding affinity correlates with the experimental data for most of the compounds evaluated. The SAR results in this study will serve as the basis for the design of new analogs in an effort to improve their ability to induce phenotypic conversion to susceptibility in amikacin-resistant pathogens.


2021 ◽  
Vol 9 ◽  
Author(s):  
Andreas Erichsen ◽  
Dennis Larsen ◽  
Sophie R. Beeren

We demonstrate how different anions from across the Hofmeister series can influence the behavior of enzyme-mediated dynamic combinatorial libraries of cyclodextrins (CDs). Using cyclodextrin glucanotransferase to catalyze reversible transglycosylation, dynamic mixtures of interconverting cyclodextrins can be formed wherein the relative concentrations of α-CD, β-CD and γ-CD is determined by their intrinsic stabilities and any stabilizing influences of added template (guest) molecules. Here, we find that addition of high concentrations of kosmotropic anions can be used to enhance the effects of added hydrophobic templates, while chaotropic anions can themselves act as templates, causing predictable and significant changes in the cyclodextrin composition due to weak, but specific, binding interactions with α-CD.


2021 ◽  
Vol 9 ◽  
Author(s):  
Alhosna Benjdia ◽  
Olivier Berteau

To face the current antibiotic resistance crisis, novel strategies are urgently required. Indeed, in the last 30 years, despite considerable efforts involving notably high-throughput screening and combinatorial libraries, only few antibiotics have been launched to the market. Natural products have markedly contributed to the discovery of novel antibiotics, chemistry and drug leads, with more than half anti-infective and anticancer drugs approved by the FDA being of natural origin or inspired by natural products. Among them, thanks to their modular structure and simple biosynthetic logic, ribosomally synthesized and posttranslationally modified peptides (RiPPs) are promising scaffolds. In addition, recent studies have highlighted the pivotal role of RiPPs in the human microbiota which remains an untapped source of natural products. In this review, we report on recent developments in radical SAM enzymology and how these unique biocatalysts have been shown to install complex and sometimes unprecedented posttranslational modifications in RiPPs with a special focus on microbiome derived enzymes.


Author(s):  
Boris D. Bekono ◽  
Akori Esmel ◽  
Brice Dali ◽  
Fidele Ntie-Kang ◽  
Melalie Keita ◽  
...  

In this work antiparasitic peptidomimetics inhibitors (PEP) of falcipain-3 (FP3) of Plasmodium falciparum (Pf) have been proposed using structure-based and computer-aided molecular design. Beginning with the crystal structure of PfFP3-K11017 complex (PDB ID: 3BWK), three-dimensional (3D) models of FP3-PEPx complexes with known activities (IC50exp) were prepared by in situ modification, based on molecular mechanics and implicit solvation to compute Gibbs free energies (GFE) of inhibitor-FP3 complex formation. This resulted in a quantitative structure-activity relationships (QSAR) model based on a linear correlation between computed GFE (ΔΔGcomp) and the experimentally measured IC50exp: (pIC50exp=-(IC50exp/109) =-0.4517×∆∆Gcomp+4.0865 ; R2 = 0.89). Apart from the structure-based relationship, a ligand-based quantitative pharmacophore model (PH4) of novel PEP analogs where substitutions were directed by comparative analysis of the active site interactions was derived using the proposed bound conformations of the PEPx. This provided structural information useful for the design of virtual combinatorial libraries (VL), which was virtually screened based on the 3D-QSAR PH4. The end results were predictory inhibitory activities falling within the low nanomolar concentration range.


Sign in / Sign up

Export Citation Format

Share Document