TMOD-27. IDENTIFYING ONCOGENIC C-MYC AND MYCN COMPLEXES IN HIGH-RISK PEDIATRIC CANCERS

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi221-vi221
Author(s):  
Bo Qiu ◽  
Bo Qiu ◽  
Bo Qiu

Abstract The MYC family of proto-oncogenes is activated in a variety of cancers, including multiple high-risk pediatric malignancies. c-MYC (MYC) is ubiquitously expressed in human tissues, while MYCN (MYCN) has tissue and developmentally restricted expression patterns. In both neuroblastoma and medulloblastoma, enhanced activity of either MYCN or c-MYC drives high-risk disease. As transcription factors, MYC proteins exert oncogenic functions through protein-protein interaction networks that alter gene expression, but also mediate a growing list of target-gene independent nuclear functions (transcriptional elongation, chromatin changes throughout the cell cycle, etc…). While c-MYC and MYCN share many functions, they also regulate distinct cellular processes, and within medulloblastoma, they are activated in distinct molecular sub-groups (i.e. MYCN amplification is found in aggressive sonic hedge hog (SHH) subgroup tumors, while MYC amplification is found in aggressive group 3 and group 4 tumors). Here, we present an approach to identify oncogenic functions of c-MYC and MYCN in medulloblastoma and neuroblastoma using human induced pluripotent stem cell (iPSCO based orthotopic model systems. We hypothesize that the protein interaction networks and oncogenic functions of c-MYC and MYCN are impacted by cellular context, which are recapitulated in our orthotopic models (cell transcriptional and epigenetic landscape, tumor microenvironment). This premise is supported by recent single cell sequencing efforts in medulloblastoma and neuroblastoma, where primary human tumor cells are found to recapitulate specific transcriptional cell states found in normal hindbrain and sympathetic nervous system development, respectively. Through proximity labeling and quantitative mass spectrometry, we aim to identify tumor and oncogene specific protein interaction networks. This information will guide functional screening approaches to identify tumor-specific vulnerabilities. * Note MYC(N) refers to c-MYC and MYCN.

2021 ◽  
Author(s):  
Qiaoxi Xia ◽  
Xiao Zhou ◽  
Mantong Chen ◽  
Ling Lin ◽  
Yan Zhao ◽  
...  

Abstract Background: The novel coronavirus SARS-CoV-2 pandemic has infected more than 130 million people, killed over 2.3 million so far. Currently, no effective drugs are available to treat this infectious disease, due to limited knowledge of the molecular mechanisms of SARS-CoV-2 infection. ACE2 (angiotensin I converting enzyme 2) has long been identified as the major receptor for coronavirus entry the host cells. Methods: In this study, we constructed the protein-protein interaction networks (PPIN) based on ACE2 and its interacting proteins, considering with the expression alternation and co-expression relationship. The potential drugs targeting the proteins in the PPIN were explored.Results: ACE2 and its interacting proteins AAMP and HRAS are obviously increased, and their PPIN show distinguishing expression patterns during the COVID-19 progression. At least six pathways are activated for the host cell in the response to the virus. Moreover, drug-target networks were built to provide important clues to block ACE2 and its interacting proteins. Except the reported four drugs for ACE2, its interacting protein CALM1 and HRAS are great potentially druggable. We also considered the path initiated from ACE2 to nucleus by cascades of interaction, especially for the transcription factors in the PPIN which are also druggable.Conclusion: In summary, this study provides new insight into the disruption of the biological response to virus mediated by ACE2, but also its cascade interacting proteins when considering of PPIN.


2020 ◽  
Author(s):  
Qiaoxi Xia ◽  
Mantong Chen ◽  
Xiao Zhou ◽  
Ling Lin ◽  
Yan Zhao ◽  
...  

Abstract Background The novel coronavirus SARS-CoV-2 pandemic has infected more than 10 million people, killed over 500,000 so far. Currently, no effective drugs are available to treat this infectious disease, due to limited knowledge of the molecular mechanisms of SARS-CoV-2 infection. ACE2 (angiotensin I converting enzyme 2) has long been identified as the major receptor for coronavirus entry the host cells. Methods In this study, we constructed the protein-protein interaction networks (PPIN) based on ACE2 and its interacting proteins, combined with the expression change and co-expression relationship. The potential drugs targeting the proteins in the PPIN were explored.Results ACE2 and its interacting proteins AAMP and HRAS are obviously increased, and their PPIN show distinguishing expression patterns during the COVID-19 progression. At least six pathways are activated for the host cell in the response to the virus. Moreover, drug-target networks were built to provide important clues to block ACE2 and its interacting proteins. Except the reported four drugs for ACE2, its interacting protein CALM1 and HRAS are great potentially druggable. We also considered the path initiated from ACE2 to nucleus by cascades of interaction, especially for the transcription factors in the PPIN which are also druggable. Conclusion In summary, this study provides new insight into the disruption of the biological response to virus mediated by ACE2, but also its cascade interacting proteins when considering of PPIN.


Sign in / Sign up

Export Citation Format

Share Document