host cells
Recently Published Documents





2022 ◽  
Vol 12 ◽  
Haiying Ma ◽  
Yujuan Niu

Highly pathogenic fowl adenovirus serotype 4 (FAdV-4) is the causative agent of hydropericardium syndrome (HPS), which is characterized by pericardial effusion and hepatitis, and is one of the foremost causes of economic losses to the poultry industry over the last 30 years. However, the metabolic changes in cells in response to FAdV-4 infection remain unclear. In order to understand the metabolic interactions between the host cell and virus, we utilized ultra-high-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry to analyze the metabolic profiles with hepatocellular carcinoma cell line (LMH) infected with FAdV-4. The results showed that FAdV-4 could restore metabolic networks in LMH cells and tricarboxylic acid cycle, glycolysis, and metabolism of purines, pyrimidines, alanine, aspartate, glutamate, and amino sugar and nucleotide sugar moieties. Moreover, FAdV-4 production was significantly reduced in LMH cells cultured in glucose or glutamine-deficient medium. These observations highlighted the importance of host cell metabolism in virus replication. Therefore, similarities and disparities in FAdV-4-regulation of the metabolism of host cells could help improve targeted drug and reduce infection.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 554
Faisal Ahmad ◽  
Aqel Albutti ◽  
Muhammad Hamza Tariq ◽  
Ghufranud Din ◽  
Muhammad Tahir ul Qamar ◽  

Hendra virus (HeV) belongs to the paramyxoviridae family of viruses which is associated with the respiratory distress, neurological illness, and potential fatality of the affected individuals. So far, no competitive approved therapeutic substance is available for HeV. For that reason, the current research work was conducted to propose some novel compounds, by adopting a Computer Aided Drug Discovery approach, which could be used to combat HeV. The G attachment Glycoprotein (Ggp) of HeV was selected to achieve the primary objective of this study, as this protein makes the entry of HeV possible in the host cells. Briefly, a library of 6000 antiviral compounds was screened for potential drug-like properties, followed by the molecular docking of short-listed compounds with the Protein Data Bank (PDB) structure of Ggp. Docked complexes of top two hits, having maximum binding affinities with the active sites of Ggp, were further considered for molecular dynamic simulations of 200 ns to elucidate the results of molecular docking analysis. MD simulations and Molecular Mechanics Energies combined with the Generalized Born and Surface Area (MMGBSA) or Poisson–Boltzmann and Surface Area (MMPBSA) revealed that both docked complexes are stable in nature. Furthermore, the same methodology was used between lead compounds and HeV Ggp in complex with its functional receptor in human, Ephrin-B2. Surprisingly, no major differences were found in the results, which demonstrates that our identified compounds can also perform their action even when the Ggp is attached to the Ephrin-B2 ligand. Therefore, in light of all of these results, we strongly suggest that compounds (S)-5-(benzylcarbamoyl)-1-(2-(4-methyl-2-phenylpiperazin-1-yl)-2-oxoethyl)-6-oxo-3,6-dihydropyridin-1-ium-3-ide and 5-(cyclohexylcarbamoyl)-1-(2-((2-(3-fluorophenyl)-2-methylpropyl)amino)-2-oxoethyl)-6-oxo-3,6-dihydropyridin-1-ium-3-ide could be considered as potential therapeutic agents against HeV; however, further in vitro and in vivo experiments are required to validate this study.

2022 ◽  
Kerri L Miazgowicz ◽  
Judith Mary Reyes Ballista ◽  
Marissa D Acciani ◽  
Ariana R Jimenez ◽  
Ryan S Belloli ◽  

Chikungunya virus (CHIKV), an alphavirus of the Togaviridae family, is the causative agent of the human disease chikungunya fever (CHIKF), which is characterized by debilitating acute and chronic arthralgia. No licensed vaccines or antivirals exist for CHIKV. Preventing the attachment of viral particles to host cells is an attractive intervention strategy. Viral entry of enveloped viruses from diverse families including Filoviridae and Flaviviridae is mediated or enhanced by phosphatidylserine receptors (PSRs). PSRs facilitate the attachment of enveloped viruses to cells by binding to exposed phosphatidylserine (PS) in the viral lipid membrane - a process termed viral apoptotic mimicry. To investigate the role of viral apoptotic mimicry during CHIKV infection, we produced viral particles with discrete amounts of exposed PS on the virion envelope by exploiting the cellular distribution of phospholipids at the plasma membrane. We found that CHIKV particles containing high outer leaflet PS (produced in cells lacking flippase activity) were more infectious in Vero cells than particles containing low levels of outer leaflet PS (produced in cells lacking scramblase activity). However, the same viral particles were similarly infectious in NIH3T3 and HAP1 cells, suggesting PS levels can influence infectivity only in cells with high levels of PSRs. Interestingly, PS-dependent CHIKV entry was observed in mosquito Aag2 cells, but not C6/36 cells. These data demonstrate that CHIKV entry via viral apoptotic mimicry is cell-type dependent. Furthermore, viral apoptotic mimicry has a mechanistic basis to influence viral dynamics in vivo in both the human and mosquito host.

2022 ◽  
Vol 10 (1) ◽  
Jiao Wang ◽  
Changxin Yu ◽  
Junyi Zhuang ◽  
Wenxin Qi ◽  
Jiawen Jiang ◽  

AbstractThe negatively charged aminophospholipid, phosphatidylserine (PtdSer), is located in the inner leaflet of the plasma membrane in normal cells, and may be exposed to the outer leaflet under some immune and blood coagulation processes. Meanwhile, Ptdser exposed to apoptotic cells can be recognized and eliminated by various immune cells, whereas on the surface of activated platelets Ptdser interacts with coagulation factors prompting enhanced production of thrombin which significantly facilitates blood coagulation. In the case where PtdSer fails in exposure or mistakenly occurs, there are occurrences of certain immunological and haematological diseases, such as the Scott syndrome and Systemic lupus erythematosus. Besides, viruses (e.g., Human Immunodeficiency Virus (HIV), Ebola virus (EBOV)) can invade host cells through binding the exposed PtdSer. Most recently, the Corona Virus Disease 2019 (COVID-19) has been similarly linked to PtdSer or its receptors. Therefore, it is essential to comprehensively understand PtdSer and its functional characteristics. Therefore, this review summarizes Ptdser, its eversion mechanism; interaction mechanism, particularly with its immune receptors and coagulation factors; recognition sites; and its function in immune and blood processes. This review illustrates the potential aspects for the underlying pathogenic mechanism of PtdSer-related diseases, and the discovery of new therapeutic strategies as well.

2022 ◽  
Vol 2022 ◽  
pp. 1-14
Palayakotai R. Raghavan

Increasing outbreaks of new pathogenic viruses have promoted the exploration of novel alternatives to time-consuming vaccines. Thus, it is necessary to develop a universal approach to halt the spread of new and unknown viruses as they are discovered. One such promising approach is to target lipid membranes, which are common to all viruses and bacteria. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has reaffirmed the importance of interactions between the virus envelope and the host cell plasma membrane as a critical mechanism of infection. Metadichol®, a nanolipid emulsion of long-chain alcohols, has been demonstrated as a strong candidate that inhibits the proliferation of SARS-CoV-2. Naturally derived substances, such as long-chain saturated lipid alcohols, reduce viral infectivity, including that of coronaviruses (such as SARS-CoV-2) by modifying their lipid-dependent attachment mechanism to human host cells. The receptor ACE2 mediates the entry of SARS-CoV-2 into the host cells, whereas the serine protease TMPRSS2 primes the viral S protein. In this study, Metadichol® was found to be 270 times more potent an inhibitor of TMPRSS2 ( E C 50 = 96   ng / mL ) than camostat mesylate ( E C 50 = 26000   ng / mL ). Additionally, it inhibits ACE with an EC50 of 71 ng/mL, but it is a very weak inhibitor of ACE2 at an EC50 of 31 μg/mL. Furthermore, the live viral assay performed in Caco-2 cells revealed that Metadichol® inhibits SARS-CoV-2 replication at an EC90 of 0.16 μg/mL. Moreover, Metadichol® had an EC90 of 0.00037 μM, making it 2081 and 3371 times more potent than remdesivir ( E C 50 = 0.77   μ M ) and chloroquine ( E C 50 = 1.14   μ M ), respectively.

2022 ◽  
Vol 23 (2) ◽  
pp. 947
Sanya Sureram ◽  
Irene Arduino ◽  
Reiko Ueoka ◽  
Massimo Rittà ◽  
Rachele Francese ◽  

Herpesviruses are highly prevalent in the human population, and frequent reactivations occur throughout life. Despite antiviral drugs against herpetic infections, the increasing appearance of drug-resistant viral strains and their adverse effects prompt the research of novel antiherpetic drugs for treating lesions. Peptides obtained from natural sources have recently become of particular interest for antiviral therapy applications. In this work, we investigated the antiviral activity of the peptide A-3302-B, isolated from a marine bacterium, Micromonospora sp., strain MAG 9-7, against herpes simplex virus type 1, type 2, and human cytomegalovirus. Results showed that the peptide exerted a specific inhibitory activity against HSV-2 with an EC50 value of 14 μM. Specific antiviral assays were performed to investigate the mechanism of action of A-3302-B. We demonstrated that the peptide did not affect the expression of viral proteins, but it inhibited the late events of the HSV-2 replicative cycle. In detail, it reduced the cell-to-cell virus spread and the transmission of the extracellular free virus by preventing the egress of HSV-2 progeny from the infected cells. The dual antiviral and previously reported anti-inflammatory activities of A-3302-B, and its effect against an acyclovir-resistant HSV-2 strain are attractive features for developing a therapeutic to reduce the transmission of HSV-2 infections.

2022 ◽  
Vol 18 (1) ◽  
Luis Fernando Valenzuela-Moreno ◽  
Sara Teresa Méndez-Cruz ◽  
Claudia Patricia Rico-Torres ◽  
Carlos Cedillo-Peláez ◽  
Dolores Correa ◽  

Abstract Background Currently, more than 300 genotypes of Toxoplasma gondii (T. gondii) have been described throughout the world, demonstrating its wide genetic diversity. The SAG3 locus is one of the genes included in the genotyping panel of this parasite. It is associated with its virulence since it participates during the invasion process of the host cells. Therefore, cloning, sequencing, and bioinformatic analysis were used to deepen the understanding of the SAG3 locus genetic diversity of T. gondii in blood samples from feral cats. Results Six different SAG3 sequences were detected, five of which were detected in one feline. Three sequences were first reported here; one of them was an intragenic recombinant. In the cladogram, four out of ten SAG3 sequences did not share nodes with others reported worldwide. Conclusions Cloning and sequencing of samples with more than one restriction pattern by PCR-RFLP were very helpful tools to demonstrate the presence of more than three genotypes of T. gondii in the blood of feral cats from southeastern Mexico. This suggests a potential mixed infection of multiple T. gondii strains and high genetic diversity of the parasites in felines in this tropical region of Mexico.

Yasuko Rikihisa

Ehrlichia chaffeensis is an obligatory intracellular bacterium that causes human monocytic ehrlichiosis, an emerging, potentially fatal tick-borne infectious disease. The bacterium enters human cells via the binding of its unique outer-membrane invasin EtpE to the cognate receptor DNase X on the host-cell plasma membrane; this triggers actin polymerization and filopodia formation at the site of E. chaffeensis binding, and blocks activation of phagocyte NADPH oxidase that catalyzes the generation of microbicidal reactive oxygen species. Subsequently, the bacterium replicates by hijacking/dysregulating host-cell functions using Type IV secretion effectors. For example, the Ehrlichia translocated factor (Etf)-1 enters mitochondria and inhibits mitochondria-mediated apoptosis of host cells. Etf-1 also induces autophagy mediated by the small GTPase RAB5, the result being the liberation of catabolites for proliferation inside host cells. Moreover, Etf-2 competes with the RAB5 GTPase-activating protein, for binding to RAB5-GTP on the surface of E. chaffeensis inclusions, which blocks GTP hydrolysis and consequently prevents the fusion of inclusions with host-cell lysosomes. Etf-3 binds ferritin light chain to induce ferritinophagy to obtain intracellular iron. To enable E. chaffeensis to rapidly adapt to the host environment and proliferate, the bacterium must acquire host membrane cholesterol and glycerophospholipids for the purpose of producing large amounts of its own membrane. Future studies on the arsenal of unique Ehrlichia molecules and their interplay with host-cell components will undoubtedly advance our understanding of the molecular mechanisms of obligatory intracellular infection and may identify hitherto unrecognized signaling pathways of human hosts. Such data could be exploited for development of treatment and control measures for ehrlichiosis as well as other ailments that potentially could involve the same host-cell signaling pathways that are appropriated by E. chaffeensis.

2022 ◽  
Vol 12 ◽  
Anh Duy Do ◽  
Chiu-Hsian Su ◽  
Yuan-Man Hsu

Helicobacter pylori is a Gram-negative pathogen that can increase the risk of stomach cancer in infected patients. H. pylori exploits lipid rafts to infect host cells. Infection triggers clustering of Lewis x antigen (Lex) and integrins in lipid rafts to facilitate H. pylori adherence to the gastric epithelium. H. pylori infection can be treated with probiotics containing lactic acid bacteria that offer numerous benefits to the host while lacking the side effects associated with antibiotic therapy. Previously, we showed that the cell-free supernatant (CFS) derived from Lactobacillus rhamnosus JB3 (LR-JB3) at a multiplicity of infection (MOI) of 25 attenuated the pathogenicity of H. pylori. In this study, we established a mucin model to simulate the gastric environment and to further understand the influence of mucin on the pathogenesis of H. pylori. Porcine stomach mucin dramatically upregulated H. pylori virulence gene expression, including that of babA, sabA, fucT, vacA, hp0499, cagA, and cagL, as well as the adhesion and invasion ability of H. pylori and induced increased levels of IL-8 in infected-AGS cells. The CFS derived from LR-JB3 at a MOI of 25 reduced the expression of H. pylori sabA, fucT, and hp0499 in mucin, as well as that of the Lex antigen and the α5β1 integrin in AGS cells during co-cultivation. These inhibitory effects of LR-JB3 also suppressed lipid raft clustering and attenuated Lewis antigen-dependent adherence, type IV secretion system-mediated cell contact, and lipid raft-mediated entry of VacA to host cells. In conclusion, LR-JB3 could affect H. pylori infection through mediating lipid raft formation of the host cells. The currently unknown cues secreted from LR-JB3 are valuable not only for treating H. pylori infection, but also for treating diseases that are also mediated by lipid raft signaling, such as cancer and aging-associated and neurodegenerative conditions.

2022 ◽  
Vol 12 (1) ◽  
Alireza Mansouri ◽  
Rasoul Kowsar ◽  
Mostafa Zakariazadeh ◽  
Hassan Hakimi ◽  
Akio Miyamoto

AbstractThe novel coronavirus disease (COVID-19) is currently a big concern around the world. Recent reports show that the disease severity and mortality of COVID-19 infected patients may vary from gender to gender with a very high risk of death for seniors. In addition, some steroid structures have been reported to affect coronavirus, SARS-CoV-2, function and activity. The entry of SARS-CoV-2 into host cells depends on the binding of coronavirus spike protein to angiotensin converting enzyme-2 (ACE2). Viral main protease is essential for the replication of SARS-CoV-2. It was hypothesized that steroid molecules (e.g., estradiol, progesterone, testosterone, dexamethasone, hydrocortisone, prednisone and calcitriol) could occupy the active site of the protease and could alter the interaction of spike protein with ACE2. Computational data showed that estradiol interacted more strongly with the main protease active site. In the presence of calcitriol, the binding energy of the spike protein to ACE2 was increased, and transferring Apo to Locked S conformer of spike trimer was facilitated. Together, the interaction between spike protein and ACE2 can be disrupted by calcitriol. Potential use of estradiol and calcitriol to reduce virus invasion and replication needs clinical investigation.

Sign in / Sign up

Export Citation Format

Share Document