scholarly journals The Implementation of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) and its Impact on the Antimicrobial Management of Pediatric Patients With Positive Blood Cultures

2016 ◽  
Vol 3 (suppl_1) ◽  
Author(s):  
Sejal Bhavsar ◽  
Camille Hamula ◽  
Tanis Dingle
2005 ◽  
Vol 51 (7) ◽  
pp. 1123-1131 ◽  
Author(s):  
Yoon Jun Kim ◽  
Soo-Ok Kim ◽  
Hyun Jae Chung ◽  
Mi Sun Jee ◽  
Byeong Gwan Kim ◽  
...  

Abstract Background: Identifying hepatitis C virus (HCV) genotypes has become increasingly important for determining clinical course and the outcome of antiviral therapy. Here we describe the development of restriction fragment mass polymorphism (RFMP) analysis, a novel matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) assay suitable for high-throughput, sensitive, specific genotyping of multiple HCV species. Methods: The assay is based on PCR amplification and mass measurement of oligonucleotides containing genotype-specific motifs in the 5′ untranslated region, into which a type IIS restriction endonuclease recognition was introduced by PCR amplification. Enzymatic cleavage of the products led to excision of multiple oligonucleotide fragments representing variable regions whose masses were determined by MALDI-TOF MS. Results: The RFMP assay identified viral genotypes present at concentrations as low as 0.5% and reliably determined their relative abundance. When sera from 318 patients were analyzed, the RFMP assay exhibited 100% concordance with results obtained by clonal sequencing and identified mixed-genotype infections in 22% of the samples, in addition to several subtype variants. Conclusions: The RFMP assay has practical advantages over existing methods, including better quantitative detection of mixed populations and detection of genotype variants without need for population-based cloning, enabling reliable viral genotyping in laboratories and efficient study of the relationship between viral genotypes and clinical outcome.


2019 ◽  
Vol 57 (9) ◽  
Author(s):  
Joachim Spergser ◽  
Claudia Hess ◽  
Igor Loncaric ◽  
Ana S. Ramírez

ABSTRACTIn veterinary diagnostic laboratories, identification of mycoplasmas is achieved by demanding, cost-intensive, and time-consuming methods that rely on antigenic or genetic identification. Since matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) seems to represent a promising alternative to the currently practiced cumbersome diagnostics, we assessed its applicability for the identification of almost all mycoplasma species isolated from vertebrate animals so far. For generating main spectrum profiles (MSPs), the type strains of 98Mycoplasma, 11Acholeplasma, and 5Ureaplasmaspecies and, in the case of 69 species, 1 to 7 clinical isolates were used. To complete the database, 3 to 7 representatives of 23 undescribedMycoplasmaspecies isolated from livestock, companion animals, and wildlife were also analyzed. A large in-house library containing 530 MSPs was generated, and the diversity of spectra within a species was assessed by constructing dendrograms based on a similarity matrix. All strains of a given species formed cohesive clusters clearly distinct from all other species. In addition, phylogenetically closely related species also clustered closely but were separated accurately, indicating that the established database was highly robust, reproducible, and reliable. Further validation of the in-house mycoplasma library using 335 independent clinical isolates of 32 mycoplasma species confirmed the robustness of the established database by achieving reliable species identification with log scores of ≥1.80. In summary, MALDI-TOF MS proved to be an excellent method for the identification and differentiation of animal mycoplasmas, combining convenience, ease, speed, precision, and low running costs. Furthermore, this method is a powerful and supportive tool for the taxonomic resolution of animal mycoplasmas.


2017 ◽  
Vol 55 (5) ◽  
pp. 1437-1445 ◽  
Author(s):  
Maya Beganovic ◽  
Michael Costello ◽  
Sarah M. Wieczorkiewicz

ABSTRACT Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) decreases the time to organism identification and improves clinical and financial outcomes. The purpose of this study was to evaluate the impact of MALDI-TOF MS alone versus MALDI-TOF MS combined with real-time, pharmacist-driven, antimicrobial stewardship (AMS) intervention on patient outcomes. This single-center, pre-post, quasiexperimental study evaluated hospitalized patients with positive blood cultures identified via MALDI-TOF MS combined with prospective AMS intervention compared to a control cohort with MALDI-TOF MS identification without AMS intervention. AMS intervention included: real-time MALDI-TOF MS pharmacist notification and prospective AMS provider feedback. The primary outcome was the time to optimal therapy (TTOT). A total of 252 blood cultures, 126 in each group, were included in the final analysis. MALDI-TOF MS plus AMS intervention significantly reduced the overall TTOT (75.17 versus 43.06 h; P < 0.001), the Gram-positive contaminant TTOT (48.21 versus 11.75 h; P < 0.001), the Gram-negative infection (GNI) TTOT (71.83 versus 35.98 h; P < 0.001), and the overall hospital length of stay (LOS; 15.03 versus 9.02 days; P = 0.021). The TTOT for Gram-positive infection (GPI) was improved (64.04 versus 41.61 h; P = 0.082). For GPI, the hospital LOS (14.64 versus 10.31 days; P = 0.002) and length of antimicrobial therapy 24.30 versus 18.97 days; P = 0.018) were reduced. For GNI, the time to microbiologic clearance (51.13 versus 34.51 h; P < 0.001), the hospital LOS (15.40 versus 7.90 days; P = 0.027), and the intensive care unit LOS (5.55 versus 1.19 days; P = 0.035) were reduced. To achieve optimal outcomes, rapid identification with MALDI-TOF MS combined with real-time AMS intervention is more impactful than MALDI-TOF MS alone.


Sign in / Sign up

Export Citation Format

Share Document