BMC Microbiology
Latest Publications


TOTAL DOCUMENTS

4279
(FIVE YEARS 1047)

H-INDEX

98
(FIVE YEARS 13)

Published By Springer (Biomed Central Ltd.)

1471-2180, 1471-2180

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Tadashi Maeda ◽  
Hiroaki Zai ◽  
Yuto Fukui ◽  
Yoshifumi Kato ◽  
Eri Kumade ◽  
...  

Abstract Background The bioactivities of commensal duodenal microbiota greatly influence the biofunction of hosts. We investigated the role of Helicobacter pylori infection in extra-gastroduodenal diseases by determining the impact of H. pylori infection on the duodenal microbiota. We sequenced 16 S rRNA genes in samples aspirated from the descending duodenum of 47 (male, 20; female, 27) individuals who were screened for gastric cancer. Samples were analysed using 16 S rRNA gene amplicon sequencing, and the LEFSe and Kyoto Encyclopaedia of Genes and Genomes methods were used to determine whether the duodenal microflora and microbial biofunctions were affected using H. pylori infection. Results Thirteen and 34 participants tested positive and negative for H. pylori, respectively. We identified 1,404 bacterial operational taxonomic units from 23 phyla and 253 genera. H. pylori infection changed the relative mean abundance of three phyla (Proteobacteria, Actinobacteria, and TM7) and ten genera (Neisseria, Rothia, TM7-3, Leptotrichia, Lachnospiraceae, Megasphaera, F16, Moryella, Filifactor, and Paludibacter). Microbiota features were significantly influenced in H. pylori-positive participants by 12 taxa mostly classified as Gammaproteobacteria. Microbial functional annotation revealed that H. pylori significantly affected 12 microbial metabolic pathways. Conclusions H. pylori disrupted normal bacterial communities in the duodenum and changed the biofunctions of commensal microbiota primarily by upregulating specific metabolic pathways. Such upregulation may be involved in the onset of diseases associated with H. pylori infection.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Zahra Farshadzadeh ◽  
Maryam Pourhajibagher ◽  
Behrouz Taheri ◽  
Alireza Ekrami ◽  
Mohammad Hossein Modarressi ◽  
...  

Abstract Background The global emergence of Acinetobacter baumannii resistance to most conventional antibiotics presents a major therapeutic challenge and necessitates the discovery of new antibacterial agents. The purpose of this study was to investigate in vitro and in vivo anti-biofilm potency of dermcidin-1L (DCD-1L) against extensively drug-resistant (XDR)-, pandrug-resistant (PDR)-, and ATCC19606-A. baumannii. Methods After determination of minimum inhibitory concentration (MIC) of DCD-1L, in vitro anti-adhesive and anti-biofilm activities of DCD-1L were evaluated. Cytotoxicity, hemolytic activity, and the effect of DCD-1L treatment on the expression of various biofilm-associated genes were determined. The inhibitory effect of DCD-1L on biofilm formation in the model of catheter-associated infection, as well as, histopathological examination of the burn wound sites of mice treated with DCD-1L were assessed. Results The bacterial adhesion and biofilm formation in all A. baumannii isolates were inhibited at 2 × , 4 × , and 8 × MIC of DCD-1L, while only 8 × MIC of DCD-1L was able to destroy the pre-formed biofilm in vitro. Also, reduce the expression of genes involved in biofilm formation was observed following DCD-1L treatment. DCD-1L without cytotoxic and hemolytic activities significantly reduced the biofilm formation in the model of catheter-associated infection. In vivo results showed that the count of A. baumannii in infected wounds was significantly decreased and the promotion in wound healing by the acceleration of skin re-epithelialization in mice was observed following treatment with 8 × MIC of DCD-1L. Conclusions Results of this study demonstrated that DCD-1L can inhibit bacterial attachment and biofilm formation and prevent the onset of infection. Taking these properties together, DCD-1L appears as a promising candidate for antimicrobial and anti-biofilm drug development.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Steven L. Taylor ◽  
Lito E. Papanicolas ◽  
Alyson Richards ◽  
Furdosa Ababor ◽  
Wan Xian Kang ◽  
...  

Abstract Background Otitis media (OM) is a major disease burden in Australian Aboriginal children, contributing to serious long-term health outcomes. We report a pilot analysis of OM in children attending an outreach ear and hearing clinic in a remote south Australian community over a two-year period. Our study focuses on longitudinal relationships between ear canal microbiota characteristics with nasopharyngeal microbiota, and clinical and treatment variables. Results Middle ear health status were assessed in 19 children (aged 3 months to 8 years) presenting in remote western South Australia and medical interventions were recorded. Over the two-year study period, chronic suppurative OM was diagnosed at least once in 7 children (37%), acute OM with perforation in 4 children (21%), OM with effusion in 11 children (58%), while only 1 child had no ear disease. Microbiota analysis of 19 children (51 sets of left and right ear canal swabs and nasopharyngeal swabs) revealed a core group of bacterial taxa that included Corynebacterium, Alloiococcus, Staphylococcus, Haemophilus, Turicella, Streptococcus, and Pseudomonas. Within-subject microbiota similarity (between ears) was significantly greater than inter-subject similarity, regardless of differences in ear disease (p = 0.0006). Longitudinal analysis revealed changes in diagnosis to be associated with more pronounced changes in microbiota characteristics, irrespective of time interval. Ear microbiota characteristics differed significantly according to diagnosis (P (perm) = 0.0001). Diagnoses featuring inflammation with tympanic membrane perforation clustering separately to those in which the tympanic membrane was intact, and characterised by increased Proteobacteria, particularly Haemophilus influenzae, Moraxella catarrhalis, and Oligella. While nasopharyngeal microbiota differed significantly in composition to ear microbiota (P (perm) = 0.0001), inter-site similarity was significantly greater in subjects with perforated tympanic membranes, a relationship that was associated with the relative abundance of H. influenzae in ear samples (rs = − 0.71, p = 0.0003). Longitudinal changes in ear microbiology reflected changes in clinical signs and treatment. Conclusions Children attending the ear and hearing clinic in a remote Aboriginal community present with a broad spectrum of OM conditions and severities, consistent with other remote Aboriginal communities. Ear microbiota characteristics align with OM diagnosis and change with disease course. Nasopharyngeal microbiota characteristics are consistent with the contribution of acute upper respiratory infection to OM aetiology.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Jamisha D. Francis ◽  
Miriam A. Guevara ◽  
Jacky Lu ◽  
Shabir A. Madhi ◽  
Gaurav Kwatra ◽  
...  

Abstract Background Streptococcus agalactiae or Group B Streptococcus (GBS) is an encapsulated gram-positive bacterial pathobiont that commonly colonizes the lower gastrointestinal tract and reproductive tract of human hosts. This bacterium can infect the gravid reproductive tract and cause invasive infections of pregnant patients and neonates. Upon colonizing the reproductive tract, the bacterial cell is presented with numerous nutritional challenges imposed by the host. One strategy employed by the host innate immune system is intoxication of bacterial invaders with certain transition metals such as zinc. Methodology Previous work has demonstrated that GBS must employ elegant strategies to circumnavigate zinc stress in order to survive in the vertebrate host. We assessed 30 strains of GBS from diverse isolation sources, capsular serotypes, and sequence types for susceptibility or resistance to zinc intoxication. Results Invasive strains, such as those isolated from early onset disease manifestations of GBS infection were significantly less susceptible to zinc toxicity than colonizing strains isolated from rectovaginal swabs of pregnant patients. Additionally, capsular type III (cpsIII) strains and the ST-17 and ST-19 strains exhibited the greatest resilience to zinc stress, whereas ST-1 and ST-12 strains as well as those possessing capsular type Ib (cpsIb) were more sensitive to zinc intoxication. Thus, this study demonstrates that the transition metal zinc possesses antimicrobial properties against a wide range of GBS strains, with isolation source, capsular serotype, and sequence type contributing to susceptibility or resistance to zinc stress.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Andong Gong ◽  
Gaozhan Wang ◽  
Yake Sun ◽  
Mengge Song ◽  
Cheelo Dimuna ◽  
...  

Abstract Background Soil fertility decline and pathogen infection are severe issues for crop production all over the world. Microbes as inherent factors in soil were effective in alleviating fertility decrease, promoting plant growth and controlling plant pathogens et al. Thus, screening microbes with fertility improving and pathogen controlling properties is of great importance to humans. Results Bacteria Pt-3 isolated from tea rhizosphere showed multiple functions in solubilizing insoluble phosphate, promoting plant growth, producing abundant volatile organic compounds (VOCs) and inhibiting the growth of important fungal pathogens in vitro. According to the 16S rRNA phylogenetic and biochemical analysis, Pt-3 was identified to be Serratia marcescens. The solubilizing zone of Pt-3 in the medium of lecithin and Ca3(PO4)2 was 2.1 cm and 1.8 cm respectively. In liquid medium and soil, the concentration of soluble phosphorus reached 343.9 mg.L− 1, and 3.98 mg.kg− 1, and significantly promoted the growth of maize seedling, respectively. Moreover, Pt-3 produced abundant volatiles and greatly inhibited the growth of seven important phytopathogens. The inhibition rate ranged from 75.51 to 100% respectively. Solid phase micro-extraction coupled with gas chromatography tandem mass spectrometry proved that the antifungal volatile was dimethyl disulfide. Dimethyl disulfide can inhibit the germination of Aspergillus flavus, and severely destroy the cell structures under scanning electron microscopy. Conclusions S. marcescens Pt-3 with multiple functions will provide novel agent for the production of bioactive fertilizer with P-solubilizing and fungal pathogens control activity.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Fang Yang ◽  
Yi Sun ◽  
Qiaoyun Lu

Abstract Background This study was aimed to determine the potency of Minocycline (MIN) and azoles, including itraconazole (ITR), voriconazole (VOR) and posaconazole (POS) against Scedosporium and Lomentospora species. Results This study revealed that MIN exhibited no significant antifungal activity against any of the tested strains, whereas in vitro combination of MIN with ITR, VOR or POS showed satisfactory synergistic effects against 8 (80%), 1 (10%), and 9 (90%) strains, respectively. Moreover, combined use of MIN with azoles decreased the minimum inhibitory concentration (MIC) range from 5.33–16 μg/ml to 1–16 μg/ml for ITR, from 0.42–16 μg/ml to 0.21–16 μg/ml for VOR, and from 1.33–16 μg/ml to 0.33–16 μg/ml for POS. Meanwhile, no antagonistic interactions were observed between the above combinations. The G. mellonella infection model demonstrated the in vivo synergistic antifungal effect of MIN and azoles. Conclusions The present study demonstrated that combinations between MIN and azoles lead to synergistic antimicrobial effects on Scedosporium and Lomentospora species, while showing a potential for overcoming and preventing azole resistance.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Luxi Jiang ◽  
Rumeng Gu ◽  
Xiaomeng Li ◽  
Meijun Song ◽  
Xiaojun Huang ◽  
...  

Abstract Background Legionella pneumophila is an opportunistic waterborne pathogen of significant public health problems, which can cause serious human respiratory diseases (Legionnaires’ disease). Multiple cross displacement amplification (MCDA), a isothermal nucleic acid amplification technique, has been applied in the rapid detection of several bacterial agents. In this report, we developed a MCDA coupled with Nanoparticles-based Lateral Flow Biosensor (MCDA-LFB) for the rapid detection of L. pneumophila. Results A set of 10 primers based on the L. pneumophila specific mip gene to specifically identify 10 different target sequence regions of L. pneumophila was designed. The optimal time and temperature for amplification are 57 min and 65 °C. The limit of detection (LoD) is 10 fg in pure cultures of L. pneumophila. No cross-reaction was obtained and the specificity of MCDA-LFB assay was 100%. The whole process of the assay, including 20 min of DNA preparation, 35 min of L. pneumophila-MCDA reaction, and 2 min of sensor strip reaction, took a total of 57 min (less than 1 h). Among 88 specimens for clinical evaluation, 5 (5.68%) samples were L. pneumophila-positive by MCDA-LFB and traditional culture method, while 4(4.55%) samples were L. pneumophila-positive by PCR method targeting mip gene. Compared with culture method, the diagnostic accuracy of MCDA-LFB method was higher. Conclusions In summary, the L. pneumophila-MCDA-LFB method we successfully developed is a simple, fast, reliable and sensitive diagnostic tool, which can be widely used in basic and clinical laboratories.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Bing Jia ◽  
Xiao Chang ◽  
Yuanyuan Fu ◽  
Wei Heng ◽  
Zhenfeng Ye ◽  
...  

Abstract Background Fe-deficiency chlorosis (FDC) of Asian pear plants is widespread, but little is known about the association between the microbial communities in the rhizosphere soil and leaf chlorosis. The leaf mineral concentration, leaf subcellular structure, soil physiochemical properties, and bacterial species community and distribution had been analysed to gain insights into the FDC in Asian pear plant. Results The total Fe in leaves with Fe-deficiency was positively correlated with total K, Mg, S, Cu, Zn, Mo and Cl contents, but no differences of available Fe (AFe) were detected between the rhizosphere soil of chlorotic and normal plants. Degraded ribosomes and degraded thylakloid stacks in chloroplast were observed in chlorotic leaves. The annotated microbiome indicated that there were 5 kingdoms, 52 phyla, 94 classes, 206 orders, 404 families, 1,161 genera, and 3,043 species in the rhizosphere soil of chlorotic plants; it was one phylum less and one order, 11 families, 59 genera, and 313 species more than in that of normal plant. Bacterial community and distribution patterns in the rhizosphere soil of chlorotic plants were distinct from those of normal plants and the relative abundance and microbiome diversity were more stable in the rhizosphere soils of normal than in chlorotic plants. Three (Nitrospira defluvii, Gemmatirosa kalamazoonesis, and Sulfuricella denitrificans) of the top five species (N. defluvii, G. kalamazoonesis, S. denitrificans, Candidatus Nitrosoarchaeum koreensis, and Candidatus Koribacter versatilis). were the identical and aerobic in both rhizosphere soils, but their relative abundance decreased by 48, 37, and 22%, respectively, and two of them (G. aurantiaca and Ca. S. usitatus) were substituted by an ammonia-oxidizing soil archaeon, Ca. N. koreensis and a nitrite and nitrate reduction related species, Ca. K. versatilis in that of chlorotic plants, which indicated the adverse soil aeration in the rhizosphere soil of chlorotic plants. A water-impermeable tables was found to reduce the soil aeration, inhibit root growth, and cause some absorption root death from infection by Fusarium solani. Conclusions It was waterlogging or/and poor drainage of the soil may inhibit Fe uptake not the amounts of AFe in the rhizosphere soil of chlorotic plants that caused FDC in this study.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Paul J. McMurdie ◽  
Magdalena K. Stoeva ◽  
Nicholas Justice ◽  
Madeleine Nemchek ◽  
Christian M. K. Sieber ◽  
...  

Abstract Background An increasing body of evidence implicates the resident gut microbiota as playing a critical role in type 2 diabetes (T2D) pathogenesis. We previously reported significant improvement in postprandial glucose control in human participants with T2D following 12-week administration of a 5-strain novel probiotic formulation (‘WBF-011’) in a double-blind, randomized, placebo controlled setting (NCT03893422). While the clinical endpoints were encouraging, additional exploratory measurements were needed in order to link the motivating mechanistic hypothesis - increased short-chain fatty acids - with markers of disease. Results Here we report targeted and untargeted metabolomic measurements on fasting plasma (n = 104) collected at baseline and end of intervention. Butyrate and ursodeoxycholate increased among participants randomized to WBF-011, along with compelling trends between butyrate and glycated haemoglobin (HbA1c). In vitro monoculture experiments demonstrated that the formulation’s C. butyricum strain efficiently synthesizes ursodeoxycholate from the primary bile acid chenodeoxycholate during butyrogenic growth. Untargeted metabolomics also revealed coordinated decreases in intermediates of fatty acid oxidation and bilirubin, potential secondary signatures for metabolic improvement. Finally, improvement in HbA1c was limited almost entirely to participants not using sulfonylurea drugs. We show that these drugs can inhibit growth of formulation strains in vitro. Conclusion To our knowledge, this is the first description of an increase in circulating butyrate or ursodeoxycholate following a probiotic intervention in humans with T2D, adding support for the possibility of a targeted microbiome-based approach to assist in the management of T2D. The efficient synthesis of UDCA by C. butyricum is also likely of interest to investigators of its use as a probiotic in other disease settings. The potential for inhibitory interaction between sulfonylurea drugs and gut microbiota should be considered carefully in the design of future studies.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Xinhua Zhao ◽  
Qiqi Dong ◽  
Yi Han ◽  
Kezhao Zhang ◽  
Xiaolong Shi ◽  
...  

Abstract Background Intercropping, a diversified planting pattern, increases land use efficiency and farmland ecological diversity. We explored the changes in soil physicochemical properties, nutrient uptake and utilization, and microbial community composition in wide-strip intercropping of maize and peanut. Results The results from three treatments, sole maize, sole peanut and intercropping of maize and peanut, showed that intercropped maize had a marginal advantage and that the nutrient content of roots, stems and grains in side-row maize was better than that in the middle row of intercropped maize and sole maize. The yield of intercropped maize was higher than that of sole cropping. The interaction between crops significantly increased soil peroxidase activity, and significantly decreased protease and dehydrogenase activities in intercropped maize and intercropped peanut. The diversity and richness of bacteria and fungi decreased in intercropped maize rhizosphere soil, whereas the richness of fungi increased intercropped peanut. RB41, Candidatus-udaeobacter, Stropharia, Fusarium and Penicillium were positively correlated with soil peroxidase activity, and negatively correlated with soil protease and dehydrogenase activities. In addition, intercropping enriched the functional diversity of the bacterial community and reduced pathogenic fungi. Conclusion Intercropping changed the composition and diversity of the bacterial and fungal communities in rhizosphere soil, enriched beneficial microbes, increased the nitrogen content of intercropped maize and provided a scientific basis for promoting intercropping in northeastern China.


Sign in / Sign up

Export Citation Format

Share Document