Oxidoreductases

Author(s):  
Perry A. Frey ◽  
Adrian D. Hegeman

Oxidoreductases constitute a very large class of enzymes. They are dehydrogenases and reductases that catalyze the removal or addition of the elements of molecular hydrogen to or from substrates. Enzymatic dehydrogenation is sometimes linked to auxiliary functions such as decarboxylation, deamination, or dehydration of the substrate, as in the actions of isocitrate dehydrogenase (decarboxylation), glutamate dehydrogenase (deamination), and ribonucleotide reductase (deoxygenation). The best known oxidoreductases are the NAD-dependent dehydrogenases, and a thorough discussion of the actions of these enzymes could easily fill a volume the size of this book. For this reason, this discussion must focus on the salient aspects of reaction mechanisms that represent the major classes of oxidoreductases. Authoritative reviews on the kinetics and structures of the main dehydrogenases are available (Banaszak et al., 1975; Brändén et al., 1975; Dalziel, 1975; Harris and Waters, 1976; Holbrook et al., 1975; Rossman et al., 1975; Smith et al., 1975; Williams, 1976). In this chapter, we emphasize the diverse oxidoreduction mechanisms and place less emphasis on auxiliary functions such as decarboxylation, the mechanisms of which are similar to the actions of enzymes discussed in earlier chapters of this book. Discussions of several dehydrogenases not included in this chapter can be found in other chapters. These include methanol, glucose, and methylamine dehydrogenases in chapter 3, dimethylsulfoxide reductase in chapter 4, and dihydrofolate reductase and β-hydroxymethylglutaryl CoA reductase in chapter 5. Pyruvate and α-ketoglutarate dehydrogenases are discussed in chapter 18. Enzymatic addition or removal of the elements of hydrogen to or from an organic molecule generally requires the action of a coenzyme. In principle, the process may proceed by any of several mechanisms, including the formal transfer of a hydride and a proton; or the transfer of two electrons and two protons; or the transfer of a hydrogen atom, an electron, and a proton; or any of several other sequences. Proteins alone do not efficiently catalyze these processes; coenzymes and cofactors generally provide the essential chemistry for catalysis by oxidoreductases. Many enzymes catalyze the dehydrogenation of an alcoholic group to a ketone or aldehyde coupled with the reduction of NAD+ to NADH.

2019 ◽  
Vol 16 (10) ◽  
pp. 1130-1137
Author(s):  
Hayrettin Ozan Gulcan ◽  
Serkan Yigitkan ◽  
Ilkay Erdogan Orhan

High cholesterol and triglyceride levels are mainly related to further generation of lifethreating metabolism disorders including cardiovascular system diseases. Therefore, hypercholesterolemia (i.e., also referred to as hyperlipoproteinemia) is a serious disease state, which must be controlled. Currently, the treatment of hypercholesterolemia is mainly achieved through the employment of statins in the clinic, although there are alternative drugs (e.g., ezetimibe, cholestyramine). In fact, the original statins are natural products directly obtained from fungi-like molds and mushrooms and they are potent inhibitors of hydroxymethylglutaryl-CoA reductase, the key enzyme in the biosynthesis of cholesterol. This review focuses on the first identification of natural statins, their synthetic and semi-synthetic analogues, and the validation of hydroxymethylglutaryl-CoA reductase as a target in the treatment of hypercholesterolemia. Furthermore, other natural products that have been shown to possess the potential to inhibit hydroxymethylglutaryl-CoA reductase are also reviewed with respect to their chemical structures.


1995 ◽  
Vol 132 (1-2) ◽  
pp. 39-43 ◽  
Author(s):  
Nina Gunde-Cimerman ◽  
Ana PlemenitaÅ¡ ◽  
Aleksa Cimerman

2007 ◽  
Vol 7 (4) ◽  
pp. 10019-10041 ◽  
Author(s):  
E. Nilsson ◽  
M. S. Johnson ◽  
F. Taketani ◽  
Y. Matsumi ◽  
M. D. Hurley ◽  
...  

Abstract. The formation of formaldehyde via hydrogen atom transfer from the methoxy radical to molecular oxygen is a key step in the atmospheric photochemical oxidation of methane, and in the propagation of deuterium from methane to molecular hydrogen. We report the results of the first investigation of the branching ratio for HCHO and HCDO formation in the CH2DO+O2 reaction. Labeled methoxy radicals (CH2DO) were generated in a photochemical reactor by photolysis of CH2DONO. HCHO and HCDO concentrations were measured using FTIR spectroscopy. Significant deuterium enrichment was seen in the formaldehyde product, from which we derive a branching ratio of 88.2±1.1% for HCDO and 11.8±1.1% for HCHO. The implications of this fractionation on the propagation of deuterium in the atmosphere are discussed.


1980 ◽  
Vol 185 (2) ◽  
pp. 435-441 ◽  
Author(s):  
Konstantinos A. Mitropoulos ◽  
Brian L. Knight ◽  
Bernard E. A. Reeves

The activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (hydroxymethylglutaryl-CoA reductase) was considerably inhibited during incubation with ATP+Mg2+. The inactivated enzyme was reactivated on further incubation with partially purified cytosolic phosphoprotein phosphatase. The inactivation was associated with a decrease in the apparent Km of the reductase for hydroxymethylglutaryl-CoA, and this was reversed on reactivation. The slight increase in activity observed during incubation of microsomal fraction without ATP was not associated with a change in apparent Km and, unlike the effect of the phosphatase, was not inhibited by NaF. Liver microsomal fraction from rats given cholesterol exhibited a low activity of hydroxymethylglutaryl-CoA reductase with a low apparent Km for hydroxymethylglutaryl-CoA. Mícrosomal fraction from rats fed cholestyramine exhibited a high activity with a high Km. To discover whether these changes had resulted from phosphorylation and dephosphorylation of the reductase, microsomal fraction from rats fed the supplemented diets and the standard diet were inactivated with ATP and reactivated with phosphoprotein phosphatase. Inactivation reduced the maximal activity of the reductase in each microsomal preparation and also reduced the apparent Km for hydroxymethylglutaryl-CoA. There was no difference between the preparations in the degree of inactivation produced by ATP. Treatment with phosphatase restored both the maximal activity and the apparent Km of each preparation, but never significantly increased the activity above that observed with untreated microsomal fraction. It is concluded that hydroxymethylglutaryl-CoA reductase in microsomal fraction prepared by standard procedures is almost entirely in the dephosphorylated form, and that the difference in kinetic properties in untreated microsomal fraction from rats fed the three diets cannot be explained by differences in the degree of phosphorylation of the enzyme.


1993 ◽  
Vol 213 (5-6) ◽  
pp. 581-585 ◽  
Author(s):  
Nakayama Toshihiro ◽  
Honma Chisako ◽  
Miki Sadao ◽  
Kumao Hamanoue

Sign in / Sign up

Export Citation Format

Share Document