phosphoprotein phosphatase
Recently Published Documents


TOTAL DOCUMENTS

299
(FIVE YEARS 11)

H-INDEX

38
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Gianmatteo Vit ◽  
Joana Duro ◽  
Girish Rajendraprasad ◽  
Emil PT Hertz ◽  
Lya Holland ◽  
...  

PP2A is an abundant phosphoprotein phosphatase that acts as a tumor suppressor. For this reason, compounds able to activate PP2A are attractive anticancer agents. The small molecule compounds iHAP1 and DT-061 have recently been reported by Leonard et al. (2020) and Morita et al. (2020) in Cell to selectively stabilize specific PP2A-B56 complexes to mediate cell killing. Here, we show that this is not the case and question key findings in these papers. Through genome wide CRISPR-Cas9 screens, we establish the biological pathways targeted by these compounds. We find that iHAP1 directly targets microtubule assembly both in vitro and in vivo and thus works as a microtubule poison. In contrast, DT-061 disrupts both the Golgi apparatus and the endoplasmic reticulum and we directly visualize DT-061 in cytoplasmic granules that co-localize with Golgi markers. Our work argues that iHAP1 and DT-061 cannot be used for dissecting PP2A-B56 biology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David Kerk ◽  
Jordan F. Mattice ◽  
Mario E. Valdés-Tresanco ◽  
Sergei Yu Noskov ◽  
Kenneth K.-S. Ng ◽  
...  

AbstractPhosphoprotein phosphatase (PPP) enzymes are ubiquitous proteins involved in cellular signaling pathways and other functions. Here we have traced the origin of the PPP sequences of Eukaryotes and their radiation. Using a bacterial PPP Hidden Markov Model (HMM) we uncovered “BacterialPPP-Like” sequences in Archaea. A HMM derived from eukaryotic PPP enzymes revealed additional, unique sequences in Archaea and Bacteria that were more like the eukaryotic PPP enzymes then the bacterial PPPs. These sequences formed the basis of phylogenetic tree inference and sequence structural analysis allowing the history of these sequence types to be elucidated. Our phylogenetic tree data strongly suggest that eukaryotic PPPs ultimately arose from ancestors in the Asgard archaea. We have clarified the radiation of PPPs within Eukaryotes, substantially expanding the range of known organisms with PPP subtypes (Bsu1, PP7, PPEF/RdgC) previously thought to have a more restricted distribution. Surprisingly, sequences from the Methanosarcinaceae (Euryarchaeota) form a strongly supported sister group to eukaryotic PPPs in our phylogenetic analysis. This strongly suggests an intimate association between an Asgard ancestor and that of the Methanosarcinaceae. This is highly reminiscent of the syntrophic association recently demonstrated between the cultured Lokiarchaeal species Prometheoarchaeum and a methanogenic bacterial species.


BBA Advances ◽  
2021 ◽  
Vol 1 ◽  
pp. 100005
Author(s):  
David Kerk ◽  
Mario E. Valdés-Tresanco ◽  
Ryan Toth ◽  
Sergei Yu. Noskov ◽  
Kenneth K.-S. Ng ◽  
...  

2020 ◽  
Vol 21 (19) ◽  
pp. 6993 ◽  
Author(s):  
Nima Abbasian ◽  
Alan Bevington ◽  
James O. Burton ◽  
Karl E. Herbert ◽  
Alison H. Goodall ◽  
...  

Hyperphosphataemia increases cardiovascular mortality in patients with kidney disease. Direct effects of high inorganic phosphate (Pi) concentrations have previously been demonstrated on endothelial cells (ECs), including generation of procoagulant endothelial microvesicles (MVs). However, no mechanism directly sensing elevated intracellular Pi has ever been described in mammalian cells. Here, we investigated the hypothesis that direct inhibition by Pi of the phosphoprotein phosphatase PP2A fulfils this sensing role in ECs, culminating in cytoskeleton disruption and MV generation. ECs were treated with control (1 mM [Pi]) vs. high (2.5 mM [Pi]), a condition that drives actin stress fibre depletion and MV generation demonstrated by confocal microscopy of F-actin and NanoSight Nanoparticle tracking, respectively. Immuno-blotting demonstrated that high Pi increased p-Src, p-PP2A-C and p-DAPK-1 and decreased p-TPM-3. Pi at 100 μM directly inhibited PP2A catalytic activity. Inhibition of PP2A enhanced inhibitory phosphorylation of DAPK-1, leading to hypophosphorylation of Tropomyosin-3 at S284 and MV generation. p-Src is known to perform inhibitory phosphorylation on DAPK-1 but also on PP2A-C. However, PP2A-C can itself dephosphorylate (and therefore inhibit) p-Src. The direct inhibition of PP2A-C by Pi is, therefore, amplified by the feedback loop between PP2A-C and p-Src, resulting in further PP2A-C inhibition. These data demonstrated that PP2A/Src acts as a potent sensor and amplifier of Pi signals which can further signal through DAPK-1/Tropomyosin-3 to generate cytoskeleton disruption and generation of potentially pathological MVs.


2020 ◽  
Vol 39 (4) ◽  
pp. 1067-1073
Author(s):  
László Buday ◽  
Virág Vas

AbstractSomatic mutations in the RAS genes are frequent in human tumors, especially in pancreatic, colorectal, and non-small-cell lung cancers. Such mutations generally decrease the ability of Ras to hydrolyze GTP, maintaining the protein in a constitutively active GTP-bound form that drives uncontrolled cell proliferation. Efforts to develop drugs that target Ras oncoproteins have been unsuccessful. Recent emerging data suggest that Ras regulation is more complex than the scientific community has believed for decades. In this review, we summarize advances in the “textbook” view of Ras activation. We also discuss a novel type of Ras regulation that involves direct phosphorylation and dephosphorylation of Ras tyrosine residues. The discovery that pharmacological inhibition of the tyrosine phosphoprotein phosphatase SHP2 maintains mutant Ras in an inactive state suggests that SHP2 could be a novel drug target for the treatment of Ras-driven human cancers.


2019 ◽  
Author(s):  
Melody Nicolau ◽  
Nathalie Picault ◽  
Julie Descombin ◽  
Yasaman Jami-Alahmadi ◽  
Suhua Feng ◽  
...  

ABSTRACTTransposable elements (TEs) are DNA repeats that must remain silenced to ensure cell integrity. Several epigenetic pathways including DNA methylation and histone modifications are involved in the silencing of TEs, and in the regulation of gene expression. In Arabidopsis thaliana, the TE-derived plant mobile domain (PMD) proteins have been involved in TE silencing, genome stability, and control of developmental processes. Using a forward genetic screen, we found that the PMD protein MAINTENANCE OF MERISTEMS (MAIN) acts synergistically and redundantly with DNA methylation to silence TEs. We found that MAIN and its close homolog MAIN-LIKE 1 (MAIL1) interact together, as well as with the phosphoprotein phosphatase (PPP) PP7-like (PP7L). Remarkably, main, mail1, pp7l single and mail1 pp7l double mutants display similar developmental phenotypes, and share common subsets of upregulated TEs and misregulated genes. Finally, phylogenetic analyses of PMD and PP7-type PPP domains among the Eudicot lineage suggest neo-association processes between the two protein domains to potentially generate new protein function. We propose that, through this interaction, the PMD and PPP domains may constitute a functional protein module required for the proper expression of a common set of genes, and for silencing of TEs.AUTHOR SUMMARYThe plant mobile domain (PMD) is a protein domain of unknown function that is widely spread in the angiosperm plants. Although most PMDs are associated with repeated DNA sequences called transposable elements (TEs), plants have domesticated the PMD to produce genic versions that play important roles within the cell. In Arabidopsis thaliana, MAINTENANCE OF MERISTEMS (MAIN) and MAIN-LIKE 1 (MAIL1) are genic PMDs that are involved in genome stability, developmental processes, and silencing of TEs. The mechanisms involving MAIN and MAIL1 in these cellular processes remain elusive. Here, we show that MAIN, MAIL1 and the phosphoprotein phosphatase (PPP) named PP7-like (PP7L) interact to form a protein complex that is required for the proper expression of genes, and the silencing of TEs. Phylogenetic analyses revealed that PMD and PP7-type PPP domains are evolutionary connected, and several plant species express proteins carrying both PMD and PPP domains. We propose that interaction of PMD and PPP domains would create a functional protein module involved in mechanisms regulating gene expression and repressing TEs.


Sign in / Sign up

Export Citation Format

Share Document