Some Applications

Author(s):  
Olivia Caramello

This chapter describes some applications of the theory developed in the previous chapters in a variety of different mathematical contexts. The main methodology used to generate such applications is the ‘bridge technique’ presented in Chapter 2. The discussed topics include restrictions of Morita equivalences to quotients of the two theories involved, give a solution to a prozblem of Lawvere concerning the boundary operator on subtoposes, establish syntax-semantics ‘bridges’ for quotients of theories of presheaf type, present topos-theoretic interpretations and generalizations of Fraïssé’s theorem in model theory on countably categorical theories and of topological Galois theory, develop a notion of maximal spectrum of a commutative ring with unit and investigate compactness conditions for geometric theories allowing one to identify theories lying in smaller fragments of geometric logic.

1987 ◽  
Vol 39 (5) ◽  
pp. 1025-1037
Author(s):  
Carl Faith

Let G be a group of automorphisms of a commutative ring K, and let KG denote the Galois subring consisting of all elements left fixed by every g in G. An ideal M is G-stable, or G-invariant, provided that g(x) lies in M for every x in M, that is, g(M) ⊆ M, for every g in G. Then, every g in G induces an automorphism in the residue ring , and if is the group consisting of all , trivially1When the inclusion (1) is strict, then G is said to be cleft at M, or by M, and otherwise G is uncleft at (by) M. When G is cleft at all ideals except 0, then G is cleft, and uncleft otherwise.


2018 ◽  
Vol 26 (3) ◽  
pp. 41-56
Author(s):  
H. Ansari-Toroghy ◽  
Sh. Habibi

AbstractLet M be a module over a commutative ring and let Max(M) be the collection of all maximal submodules of M. We topologize Max(M) with quasi-Zariski topology, where M is a Max-top module. For a subset T of Max(M), we introduce a new graph $G(\tau_T^{*m})$, called the quasi-Zariski topology-graph on the maximal spectrum of M. It helps us to study algebraic (resp. topological) properties of M (resp. Max(M)) by using the graphs theoretical tools.


2008 ◽  
Vol 51 (3) ◽  
pp. 439-447
Author(s):  
Karim Samei

AbstractAnR-moduleMis called a multiplication module if for each submoduleNofM,N=IMfor some idealIofR. As defined for a commutative ringR, anR-moduleMis said to be semiprimitive if the intersection of maximal submodules ofMis zero. The maximal spectra of a semiprimitive multiplication moduleMare studied. The isolated points of Max(M) are characterized algebraically. The relationships among the maximal spectra ofM, Soc(M) and Ass(M) are studied. It is shown that Soc(M) is exactly the set of all elements ofMwhich belongs to every maximal submodule ofMexcept for a finite number. If Max(M) is infinite, Max(M) is a one-point compactification of a discrete space if and only ifMis Gelfand and for some maximal submoduleK, Soc(M) is the intersection of all prime submodules ofMcontained inK. WhenMis a semiprimitive Gelfand module, we prove that every intersection of essential submodules ofMis an essential submodule if and only if Max(M) is an almost discrete space. The set of uniform submodules ofMand the set of minimal submodules ofMcoincide. Ann(Soc(M))Mis a summand submodule ofMif and only if Max(M) is the union of two disjoint open subspacesAandN, whereAis almost discrete andNis dense in itself. In particular, Ann(Soc(M)) = Ann(M) if and only if Max(M) is almost discrete.


1966 ◽  
Vol 27 (2) ◽  
pp. 721-731 ◽  
Author(s):  
O. E. Villamayor ◽  
D. Zelinsky

In [5], Chase, Harrison and Rosenberg proved the Fundamental Theorem of Galois Theory for commutative ring extensions S ⊃ R under two hypotheses: (i) 5 (and hence R) has no idempotents except 0 and l; and (ii) 5 is Galois over R with respect to a finite group G—which in the presence of (i) is equivalent to (ii′): S is separable as an R-algebra, finitely generated and projective as an R-module, and the fixed ring under the group of all R-algebra automorphisms of S is exactly R.


1997 ◽  
Vol 62 (2) ◽  
pp. 487-492 ◽  
Author(s):  
Anand Pillay

In this paper we develop some basic features of Galois cohomology, specifically the connection between first Galois cohomology groups and principal homogeneous spaces, in a model-theoretic context. “Descent theory” also fits into our approach.The model theory involved is elementary, and the reader is referred to [2]. It should be said that we make crucial use of Meq in our analysis. The reader is also referred to Poizat's seminal paper “Une theorie de Galois imaginaire” ([6]). Although our results do not depend on Poizat's work, it is in his paper that the model-theoretic context is suggested for a generalised treatment of Galois theory.Nothing in this paper is particularly deep. We are concerned mainly with translating between the Galois cohomological language and the language of definable sets and definable families of definable sets. We will introduce (in a suitable context) the notion of a definable cocycle (from an automorphism group to a definable group G). The (classical) situation of profinite and continuous cocycles will be a special case. Kolchin's theory of constrained cohomology will be another special case, and our results yield a substantially simpler proof of his Theorem 5 from Chapter VII of [4]. In any case model-theorists will see that definable cocycles correspond to objects with which they are already quite familiar—commuting families of definable bijections.


Author(s):  
Julio R. Bastida ◽  
Roger Lyndon

Sign in / Sign up

Export Citation Format

Share Document