Oil and water do not mix—hydrophobic hydration

Surfactants ◽  
2019 ◽  
pp. 17-24
Author(s):  
Bob Aveyard

Many surfactants contain hydrocarbon moieties that are removed from their aqueous environment (‘dehydrated’) in, for example, adsorption and micelle formation. Hydrophobic hydration relates to the interactions between individual nonpolar solute molecules and water, and can be probed using thermodynamic quantities for the dissolution of dilute hydrocarbon vapours to form dilute aqueous solutions. Contrary to the simple expectation that the entropy of hydration of a nonpolar moiety should be positive (due to disruption of water structure), it is large and negative, giving a large positive contribution to the free energy of hydration. The hydration of nonpolar molecules in water leads to an attraction between the molecules in close proximity, which is termed hydrophobic bonding. Although the free energy of hydration of nonpolar groups in bulk aqueous solution is positive, the interaction free energy of nonpolar molecules/groups with interfacial water at an air/water interface is negative.

ChemInform ◽  
2010 ◽  
Vol 30 (32) ◽  
pp. no-no
Author(s):  
Su Hwan Son ◽  
Cheol Kyu Han ◽  
Soon Kil Ahn ◽  
Jeong Hyeok Yoon ◽  
Kyoung Tai No

2007 ◽  
Vol 111 (7) ◽  
pp. 1872-1882 ◽  
Author(s):  
Jan Westergren ◽  
Lennart Lindfors ◽  
Tobias Höglund ◽  
Kai Lüder ◽  
Sture Nordholm ◽  
...  

1948 ◽  
Vol 1 (4) ◽  
pp. 480 ◽  
Author(s):  
NS Hush

Values of hydration energies of individual ions have usually been obtained by division of sums of energies of hydration of pairs of ions, and those calculated by different authors are usually mutually inconsistent. " Experimental " figures, whenever these are quoted, have always been obtained by assuming the truth of theoretical equations whose accuracy has not been independently checked. The distinction between free energy of ion/water-molecule interaction and the real free energy of hydration of a gaseous ion is pointed out, and the importance of Klein and Lange's measurement of the Volta-potential Hg/Hg+ (soln.), which makes possible the direct calculation of real free energies of hydration of individual ions, thus providing a check on theoretical values, is emphasized. Utilizing this value, the equation - ΔFh� = - ΔFf� + ΔFi� + ΔFs�- 103.92 z kcal. (where ΔFs� is the free energy of formation of the gaseous monatomic element, ΔFi� is the free energy of ionization, ΔFf�is the free energy of formation of the aqueous ion, and ΔFh� is the real free energy of hydration of the ion, of valency z, at 298.2� K.) is derived from fundamental considerations. By means of this equation, the real free energies of hydration of 49 ions are calculated, using the most reliable data. It is proposed that these be provisionally accepted as standard values. Several subsidiary values for important ions are calculated indirectly. The difference between ΔFh� and the free energy of ion/water-molecule interaction is discussed in relation to the surface structure of water : a value of -0.30 v. is derived for the X-potential at the surface of pure water, and it is concluded that at the water/gas interface the positive poles of the surface layer are oriented towards the gas phase. The applicability of a modified Born equation in the calculation of free energies of hydration is discussed, and a modified equation is proposed which yields values of ΔFh� for gaseous ions with noble gas structure in excellent agreement with those calculated independently by the method described above.


Sign in / Sign up

Export Citation Format

Share Document