Decomposition Space Theory and the Bing Shrinking Criterion

2021 ◽  
pp. 62-76
Author(s):  
Christopher W. Davis ◽  
Boldizsár Kalmár ◽  
Min Hoon Kim ◽  
Henrik Rüping

‘Decomposition Space Theory and the Bing Shrinking Criterion’ gives a proof of the central Bing shrinking criterion and then provides an introduction to the key notions of the field of decomposition space theory. The chapter begins by proving the Bing shrinking criterion, which characterizes when a given map between compact metric spaces is approximable by homeomorphisms. Next, it develops the elements of the theory of decomposition spaces. A key fact is that a decomposition space associated with an upper semi-continuous decomposition of a compact metric space is again a compact metric space. Decomposition spaces are key in the proof of the disc embedding theorem.

2013 ◽  
Vol 56 (1) ◽  
pp. 61-66
Author(s):  
Milan Paštéka

ABSTRACT We define uniform distribution in compact metric space with respect to the Buck’s measure density originated in [Buck, R. C.: The measure theoretic approach to density, Amer. J. Math. 68 (1946), 560-580]. Weyl’s criterion is derived. This leads to an existence result.


1988 ◽  
Vol 103 (3) ◽  
pp. 481-486
Author(s):  
José M. R. Sanjurjo

The relationship between components and movability for compacta (i.e. compact metric spaces) was described by Borsuk in [5]. Borsuk proved that if each component of a compactum X is movable, then so is X. More recently Segal and Spiez[19], motivated by results of Alonso Morón[1], have constructed a (non-compact) metric space X of small inductive dimension zero and such that X is non-movable. The construction of Segal and Spiez was based on the famous space of P. Roy [16]. On the other hand, K. Borsuk gave in [5] an example of a movable compactum with non-movable components. The structure of such compacta was studied by Oledzki in [15], where he obtained an interesting result stating that if X is a movable compactum then the set of movable components of X is dense in the space of components of X. Oledzki's result was later strengthened by Nowak[14], who proved that if all movable components of a movable compactum X are of deformation dimension at most n, then so are the non-movable components and the compactum X itself.


1969 ◽  
Vol 1 (1) ◽  
pp. 137-141 ◽  
Author(s):  
A. R. Vobach

Let H(C) be the group of homeomorphisms of the Cantor set, C, onto itself. Let p: C → M be a map of C onto a compact metric space M, and let G(p, M) be is a group.The map p: C → M is standard, if for each (x, y) ∈ C × C such that p(x) = p(y), there is a sequence and a sequence such that xn → x and hn (xn) → y Standard maps and their associated groups characterize compact metric spaces in the sense that: Two such spaces, M and N, are homeomorphic if and only if, given p standard from C onto M, there is a standard q from C onto N for which G(p, M) = h−1G(q, N)h, for some h ∈ H(C) The present paper exhibits a structure theorem connecting these characterizing subgroups of H(C) and products of spaces: Let M1 and M2 be compact metric spaces. Then there are standard maps p: C → M1 × M2 and pi: C → Mi, i = 1, 2, such that G(p, M1 × M2) = G(p1, M1) ∩ G(p2, M2).


2013 ◽  
Vol 34 (3) ◽  
pp. 765-776 ◽  
Author(s):  
A. ARBIETO ◽  
C. A. MORALES

AbstractWe prove that the stable classes for continuous maps on compact metric spaces have measure zero with respect to any ergodic invariant measure with positive entropy. Then, every continuous map with positive topological entropy on a compact metric space has uncountably many stable classes. We also prove that every continuous map with positive topological entropy of a compact metric space cannot be Lyapunov stable on its recurrent set. For homeomorphisms on compact metric spaces we prove that the sets of heteroclinic points, and sinks in the canonical coordinates case, have zero measure with respect to any ergodic invariant measure with positive entropy. These results generalize those of Fedorenko and Smital [Maps of the interval Ljapunov stable on the set of nonwandering points. Acta Math. Univ. Comenian. (N.S.)60 (1) (1991), 11–14], Huang and Ye [Devaney’s chaos or 2-scattering implies Li–Yorke’s chaos. Topology Appl.117 (3) (2002), 259–272], Reddy [The existence of expansive homeomorphisms on manifolds. Duke Math. J.32 (1965), 627–632], Reddy and Robertson [Sources, sinks and saddles for expansive homeomorphisms with canonical coordinates. Rocky Mountain J. Math.17 (4) (1987), 673–681], Sindelarova [A counterexample to a statement concerning Lyapunov stability. Acta Math. Univ. Comenian. 70 (2001), 265–268], and Zhou [Some equivalent conditions for self-mappings of a circle. Chinese Ann. Math. Ser. A12(suppl.) (1991), 22–27].


The disc embedding theorem provides a detailed proof of the eponymous theorem in 4-manifold topology. The theorem, due to Michael Freedman, underpins virtually all of our understanding of 4-manifolds in the topological category. Most famously, this includes the 4-dimensional topological Poincaré conjecture. Combined with the concurrent work of Simon Donaldson, the theorem reveals a remarkable disparity between the topological and smooth categories for 4-manifolds. A thorough exposition of Freedman’s proof of the disc embedding theorem is given, with many new details. A self-contained account of decomposition space theory, a beautiful but outmoded branch of topology that produces non-differentiable homeomorphisms between manifolds, is provided. Techniques from decomposition space theory are used to show that an object produced by an infinite, iterative process, which we call a skyscraper, is homeomorphic to a thickened disc, relative to its boundary. A stand-alone interlude explains the disc embedding theorem’s key role in smoothing theory, the existence of exotic smooth structures on Euclidean space, and all known homeomorphism classifications of 4-manifolds via surgery theory and the s-cobordism theorem. The book is written to be accessible to graduate students working on 4-manifolds, as well as researchers in related areas. It contains over a hundred professionally rendered figures.


1999 ◽  
Vol 64 (3) ◽  
pp. 1295-1306 ◽  
Author(s):  
Marion Scheepers

AbstractIn a previous paper—[17]—we characterized strong measure zero sets of reals in terms of a Ramseyan partition relation on certain subspaces of the Alexandroff duplicate of the unit interval. This framework gave only indirect access to the relevant sets of real numbers. We now work more directly with the sets in question, and since it costs little in additional technicalities, we consider the more general context of metric spaces and prove:1. If a metric space has a covering property of Hurewicz and has strong measure zero, then its product with any strong measure zero metric space is a strong measure zero metric space (Theorem 1 and Lemma 3).2. A subspace X of a σ-compact metric space Y has strong measure zero if, and only if, a certain Ramseyan partition relation holds for Y (Theorem 9).3. A subspace X of a σ-compact metric space Y has strong measure zero in all finite powers if, and only if, a certain Ramseyan partition relation holds for Y (Theorem 12).Then 2 and 3 yield characterizations of strong measure zeroness for σ-totally bounded metric spaces in terms of Ramseyan theorems.


2021 ◽  
pp. 44-62
Author(s):  
Stefan Behrens ◽  
Allison N. Miller ◽  
Matthias Nagel ◽  
Peter Teichner

‘The Schoenflies Theorem after Mazur, Morse, and Brown’ provides two proofs of the Schoenflies theorem. The Schoenflies theorem states that every bicollared embedding of an (n – 1)-sphere in the n-sphere splits the n-sphere into two balls. This chapter provides two proofs. The first is due to Mazur and Morse; it utilizes an infinite ‘swindle’ and a classical technique called push-pull. The second proof, due to Brown, serves as an introduction to shrinking, or decomposition space theory. The latter is a beautiful, but outmoded, branch of topology that can be used to produce non-differentiable homeomorphisms between manifolds, especially from a manifold to a quotient space. Techniques from decomposition space theory are essential in the proof of the disc embedding theorem.


1971 ◽  
Vol 4 (1) ◽  
pp. 63-68
Author(s):  
A. R. Vobach

Let H(C) be the group of homeomorphisms of the cantor set, C onto itself. Let p: C → M be a (continuous) map of C onto a compact metric space M, and let G(p, M) be {h ∈ H(C) | ∀x ∈ C, p(x) = ph(x)}. G(p, M) is a group. The map p: C → M is standard, if for each (x, y) ∈ C × C such that p(x) = p(y), there is a sequence and a sequence such that xn → x and hn(xn) → y. Standard maps and their associated groups characterize compact metric spaces in the sense that: Two such spaces, M and N, are homeomorphic if and only if, given p standard from C onto M, there is a standard q from C onto N for which G(p, M) = h−1G(q, N)h, for some h ∈ H(C). That is, two compact metric spaces are homeomorphic if and only if they determine, via standard maps, the same classes of conjugate subgroups of H(C).The present note exhibits two natural structure theorems relating algebraic and topological properties: First, if M = H ∪ K (H, K ≠ π) , compact metric, and p : C → M are given, then G(p, M) is isomorphic to a subdirect product of G(p, M)/S(p, H\K) and G(p, M)/S(p, K\H) where, generally, S(p, N) is the normal subgroup of homeomorphisms supported on p−1M . Second, given M and N compact metric and p : M → N continuous and onto, let M ≠ M − CID*α ≠ 0 , where {Dα}α ∈ A is the collection of non-degenerate preimages of points in N Then there is a standard p : C → M such that fp : C → N is standard and there is a homomorphism.


2021 ◽  
pp. 27-42
Author(s):  
Arunima Ray

‘Outline of the Upcoming Proof’ provides a comprehensive outline of the proof of the disc embedding theorem. The disc embedding theorem for topological 4-manifolds, due to Michael Freedman, underpins virtually all our understanding of topological 4-manifolds. The famously intricate proof utilizes techniques from both decomposition space theory and smooth manifold topology. The latter is used to construct an infinite iterated object, called a skyscraper, and the former to construct homeomorphisms from a given topological space to a quotient space. The detailed proof of the disc embedding theorem is the core aim of this book. In this chapter, a comprehensive outline of the proof is provided, indicating the chapters in which each aspect is discussed in detail.


2021 ◽  
pp. 407-446
Author(s):  
Stefan Behrens ◽  
Daniel Kasprowski ◽  
Mark Powell ◽  
Arunima Ray

‘Skyscrapers Are Standard: The Details’ provides a thorough and detailed proof that every skyscraper is homeomorphic to the standard 2-handle, relative to the attaching region. Results from decomposition space theory established in Part I and the constructive results from Part II are combined. The idea is to construct a subset of a skyscraper called the design, define an embedding of this subset into the standard 2-handle, and then consider the decomposition spaces obtained by quotienting out the connected components of the complement of this common subset. It is shown that the decomposition spaces are homeomorphic, and that both quotient maps are approximable by homeomorphisms. This chapter also shows that everything can be done fixing a neighbourhood of the attaching region. It is then deduced that skyscrapers are standard, as desired.


Sign in / Sign up

Export Citation Format

Share Document