Number theory

Author(s):  
Thomas Spencer

This article examines some of the connections between random matrix theory (RMT) and number theory, including the modelling of the value distributions of the Riemann zeta function and other L-functions as well as the statistical distribution of their zeros. Number theory has been used in RMT to address seemingly disparate questions, such as modelling mean and extreme values of the Riemann zeta function and counting points on curves. One thing in common among the applications of RMT to number theory is the L-function. The statistics of the critical zeros of these functions are believed to be related to those of the eigenvalues of random matrices. The article first considers the truth of the generalized Riemann hypothesis before discussing the values of the Riemann zeta function, the values of L-functions, and further areas of interest with respect to the connections between RMT and number theory

2009 ◽  
Vol 59 (3) ◽  
Author(s):  
Jörn Steuding

AbstractOn the basis of the Random Matrix Theory-model several interesting conjectures for the Riemann zeta-function were made during the recent past, in particular, asymptotic formulae for the 2kth continuous and discrete moments of the zeta-function on the critical line, $$ \frac{1} {T}\int\limits_0^T {|\zeta (\tfrac{1} {2} + it)|^{2k} dt} and \frac{1} {{N(T)}}\sum\limits_{0 < \gamma \leqslant {\rm T}} {|\zeta (\tfrac{1} {2} + i(\gamma + \tfrac{\alpha } {L}))|^{2k} } $$, by Conrey, Keating et al. and Hughes, respectively. These conjectures are known to be true only for a few values of k and, even under assumption of the Riemann hypothesis, estimates of the expected order of magnitude are only proved for a limited range of k. We put the discrete moment for k = 1, 2 in relation with the corresponding continuous moment for the derivative of Hardy’s Z-function. This leads to upper bounds for the discrete moments which are off the predicted order by a factor of log T.


Author(s):  
Brian Conrey ◽  
Jonathan P. Keating

We establish a connection between the conjectural two-over-two ratios formula for the Riemann zeta-function and a conjecture concerning correlations of a certain arithmetic function. Specifically, we prove that the ratios conjecture and the arithmetic correlations conjecture imply the same result. This casts a new light on the underpinnings of the ratios conjecture, which previously had been motivated by analogy with formulae in random matrix theory and by a heuristic recipe.


2018 ◽  
Vol 372 (3-4) ◽  
pp. 999-1015 ◽  
Author(s):  
Andriy Bondarenko ◽  
Kristian Seip

2014 ◽  
Vol 157 (3) ◽  
pp. 425-442 ◽  
Author(s):  
STEPHEN LESTER

AbstractWe establish an asymptotic formula describing the horizontal distribution of the zeros of the derivative of the Riemann zeta-function. For ℜ(s) = σ satisfying (log T)−1/3+ε ⩽ (2σ − 1) ⩽ (log log T)−2, we show that the number of zeros of ζ′(s) with imaginary part between zero and T and real part larger than σ is asymptotic to T/(2π(σ−1/2)) as T → ∞. This agrees with a prediction from random matrix theory due to Mezzadri. Hence, for σ in this range the zeros of ζ′(s) are horizontally distributed like the zeros of the derivative of characteristic polynomials of random unitary matrices are radially distributed.


2020 ◽  
Author(s):  
Sourangshu Ghosh

In this paper, we shall try to prove the Riemann Hypothesis which is a conjecture that the Riemann zeta function hasits zeros only at the negative even integers and complex numbers with real part ½. This conjecture is very importantand of considerable interest in number theory because it tells us about the distribution of prime numbers along thereal line. This problem is one of the clay mathematics institute’s millennium problems and also comprises the 8ththe problem of Hilbert’s famous list of 23 unsolved problems. There have been many unsuccessful attempts in provingthe hypothesis. In this paper, we shall give proof to the Riemann Hypothesis.


Sign in / Sign up

Export Citation Format

Share Document