Andrology: Effects of pentoxifylline and progesterone on human sperm capacitation and acrosome reaction

1994 ◽  
Vol 9 (12) ◽  
pp. 2318-2323 ◽  
Author(s):  
V.J. Kay ◽  
J.R.T. Coutts ◽  
L. Robertson
2020 ◽  
Author(s):  
Peibei Sun ◽  
Yayan Wang ◽  
Tian Gao ◽  
Kun Li ◽  
Dongwang Zheng ◽  
...  

Abstract Background: Heat shock protein 90 (Hsp90) is a highly abundant eukaryotic molecular chaperone that plays important roles in client protein maturation, protein folding and degradation, and signal transduction. Previously, we found that both Hsp90 and its co-chaperone cell division cycle protein 37 (Cdc37) were expressed in human sperm. Hsp90 is known to be involved in human sperm capacitation via unknown underlying mechanism(s). As Cdc37 was a kinase-specific co-chaperone of Hsp90, Hsp90 may regulate human sperm capacitation via other kinases. It has been reported that two major mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase 1/2 (Erk1/2) and p38, are expressed in human sperm in the same locations as Hsp90 and Cdc37. Phosphorylated Erk1/2 has been shown to promote sperm hyperactivated motility and acrosome reaction, while phosphorylated p38 inhibits sperm motility. Therefore, in this study we explored whether Hsp90 modulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways. Methods: Human sperm was treated with the Hsp90-specific inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) during capacitation. Computer-assisted sperm analyzer (CASA) was used to detect sperm motility and hyperactivation. The sperm acrosome reaction was analyzed by using fluorescein isothiocyanate-conjugated Pisum sativum agglutinin (PSA-FITC) staining. The interactions between Hsp90, Cdc37, Erk1/2 and p38 were assessed using co-immunoprecipitation (Co-IP) experiments. Western blotting analysis was used to evaluate the levels of protein expression and phosphorylation. Results: Human sperm hyperactivation and acrosome reaction were inhibited by 17-AAG, suggesting that Hsp90 is involved in human sperm capacitation. In addition, Co-IP experiments revealed that 17-AAG reduced the interaction between Hsp90 and Cdc37, leading to the dissociation of Erk1/2 from the Hsp90-Cdc37 protein complex. Western blotting analysis revealed that levels of Erk1/2 and its phosphorylated form were subsequently decreased. Decreasing of Hsp90-Cdc37 complex also affected the interaction between Hsp90 and p38. Nevertheless, p38 dissociated from the Hsp90 protein complex and was activated by autophosphorylation. Conclusions: Taken together, our findings indicate that Hsp90 is involved in human sperm hyperactivation and acrosome reaction. In particular, Hsp90 and its co-chaperone Cdc37 form a protein complex with Erk1/2 and p38 to regulate their kinase activity. These results suggest that Hsp90 regulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways.


1989 ◽  
Vol 10 (3) ◽  
pp. 232-239 ◽  
Author(s):  
C.J. de JONGE ◽  
S.R. MACK ◽  
L.J.D. ZANEVELD

2015 ◽  
Vol 362 (3) ◽  
pp. 665-675 ◽  
Author(s):  
Bar Megnagi ◽  
Maya Finkelstein ◽  
Ortal Shabtay ◽  
Haim Breitbart

2021 ◽  
Author(s):  
Peibei Sun ◽  
Yayan Wang ◽  
Tian Gao ◽  
Kun Li ◽  
Dongwang Zheng ◽  
...  

Abstract Background: Heat shock protein 90 (Hsp90) is a highly abundant eukaryotic molecular chaperone that plays important roles in client protein maturation, protein folding and degradation, and signal transduction. Previously, we found that both Hsp90 and its co-chaperone cell division cycle protein 37 (Cdc37) were expressed in human sperm. Hsp90 is known to be involved in human sperm capacitation via unknown underlying mechanism(s). As Cdc37 was a kinase-specific co-chaperone of Hsp90, Hsp90 may regulate human sperm capacitation via other kinases. It has been reported that two major mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase 1/2 (Erk1/2) and p38, are expressed in human sperm in the same locations as Hsp90 and Cdc37. Phosphorylated Erk1/2 has been shown to promote sperm hyperactivated motility and acrosome reaction, while phosphorylated p38 inhibits sperm motility. Therefore, in this study we explored whether Hsp90 modulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways. Methods: Human sperm was treated with the Hsp90-specific inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) during capacitation. Computer-assisted sperm analyzer (CASA) was used to detect sperm motility and hyperactivation. The sperm acrosome reaction was analyzed by using fluorescein isothiocyanate-conjugated Pisum sativum agglutinin (PSA-FITC) staining. The interactions between Hsp90, Cdc37, Erk1/2 and p38 were assessed using co-immunoprecipitation (Co-IP) experiments. Western blotting analysis was used to evaluate the levels of protein expression and phosphorylation. Results: Human sperm hyperactivation and acrosome reaction were inhibited by 17-AAG, suggesting that Hsp90 is involved in human sperm capacitation. In addition, Co-IP experiments revealed that 17-AAG reduced the interaction between Hsp90 and Cdc37, leading to the dissociation of Erk1/2 from the Hsp90-Cdc37 protein complex. Western blotting analysis revealed that levels of Erk1/2 and its phosphorylated form were subsequently decreased. Decreasing of Hsp90-Cdc37 complex also affected the interaction between Hsp90 and p38. Nevertheless, p38 dissociated from the Hsp90 protein complex and was activated by autophosphorylation. Conclusions: Taken together, our findings indicate that Hsp90 is involved in human sperm hyperactivation and acrosome reaction. In particular, Hsp90 and its co-chaperone Cdc37 form a protein complex with Erk1/2 and p38 to regulate their kinase activity. These results suggest that Hsp90 regulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Peibei Sun ◽  
Yayan Wang ◽  
Tian Gao ◽  
Kun Li ◽  
Dongwang Zheng ◽  
...  

Abstract Background Heat shock protein 90 (Hsp90) is a highly abundant eukaryotic molecular chaperone that plays important roles in client protein maturation, protein folding and degradation, and signal transduction. Previously, we found that both Hsp90 and its co-chaperone cell division cycle protein 37 (Cdc37) were expressed in human sperm. Hsp90 is known to be involved in human sperm capacitation via unknown underlying mechanism(s). As Cdc37 was a kinase-specific co-chaperone of Hsp90, Hsp90 may regulate human sperm capacitation via other kinases. It has been reported that two major mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase 1/2 (Erk1/2) and p38, are expressed in human sperm in the same locations as Hsp90 and Cdc37. Phosphorylated Erk1/2 has been shown to promote sperm hyperactivated motility and acrosome reaction, while phosphorylated p38 inhibits sperm motility. Therefore, in this study we explored whether Hsp90 modulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways. Methods Human sperm was treated with the Hsp90-specific inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) during capacitation. Computer-assisted sperm analyzer (CASA) was used to detect sperm motility and hyperactivation. The sperm acrosome reaction was analyzed by using fluorescein isothiocyanate-conjugated Pisum sativum agglutinin (PSA-FITC) staining. The interactions between Hsp90, Cdc37, Erk1/2 and p38 were assessed using co-immunoprecipitation (Co-IP) experiments. Western blotting analysis was used to evaluate the levels of protein expression and phosphorylation. Results Human sperm hyperactivation and acrosome reaction were inhibited by 17-AAG, suggesting that Hsp90 is involved in human sperm capacitation. In addition, Co-IP experiments revealed that 17-AAG reduced the interaction between Hsp90 and Cdc37, leading to the dissociation of Erk1/2 from the Hsp90-Cdc37 protein complex. Western blotting analysis revealed that levels of Erk1/2 and its phosphorylated form were subsequently decreased. Decreasing of Hsp90-Cdc37 complex also affected the interaction between Hsp90 and p38. Nevertheless, p38 dissociated from the Hsp90 protein complex and was activated by autophosphorylation. Conclusions Taken together, our findings indicate that Hsp90 is involved in human sperm hyperactivation and acrosome reaction. In particular, Hsp90 and its co-chaperone Cdc37 form a protein complex with Erk1/2 and p38 to regulate their kinase activity. These results suggest that Hsp90 regulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways.


1991 ◽  
Vol 56 (5) ◽  
pp. 960-966 ◽  
Author(s):  
Dale W. Stovall ◽  
Robert B. Shabanowitz

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rasoul Kowsar ◽  
Shahrzad Ronasi ◽  
Nima Sadeghi ◽  
Khaled Sadeghi ◽  
Akio Miyamoto

AbstractUpon insemination, sperm cells are exposed to components of the female reproductive tract (FRT) fluids, such as urea and epidermal growth factor (EGF). It has been shown that both urea and EGF use EGF receptor signaling and produce reactive oxygen species (ROS) that are required at certain levels for sperm capacitation and acrosome reaction. We therefore hypothesized that during bovine sperm capacitation, a high level of urea and EGF could interfere with sperm function through overproduction of ROS. High-level urea (40 mg/dl urea is equal to 18.8 mg/dl of blood urea nitrogen) significantly increased ROS production and TUNEL-positive sperm (sperm DNA fragmentation, sDF) percentage, but decreased HOS test score, progressive motility, acrosome reaction and capacitation. The EGF reversed the negative effects of urea on all sperm parameters, with the exception of ROS production and DNA fragmentation, which were higher in urea-EGF-incubated sperm than in control-sperm. The developmental competence of oocytes inseminated with urea-EGF-incubated sperm was significantly reduced compared to the control. A close association of ROS production or sDF with 0-pronuclear and sperm non-capacitation rates was found in the network analysis. In conclusion, EGF enhanced urea-reduced sperm motility; however, it failed to reduce urea-increased sperm ROS or sDF levels and to enhance subsequent oocyte competence. The data suggests that any study to improve sperm quality should be followed by a follow-up assessment of the fertilization outcome.


Sign in / Sign up

Export Citation Format

Share Document