Purification and Properties of a Pyrophosphatase from Rat Liver Microsomes Capable of Catalyzing the Hydrolysis of UDP-Glucuronic Acid*

1966 ◽  
Vol 59 (2) ◽  
pp. 126-134 ◽  
Author(s):  
HARUKI OGAWA ◽  
MIKIO SAWADA ◽  
MINORU KAWADA
1962 ◽  
Vol 15 (3) ◽  
pp. 563-578 ◽  
Author(s):  
Lars Ernster ◽  
Lois C. Jones

Rat liver microsomes catalyze the hydrolysis of the triphosphates of adenosine, guanosine, uridine, cytidine, and inosine into the corresponding diphosphates and inorganic orthophosphate. The activities are stimulated by Na2S2O4, and inhibited by atebrin, chlorpromazine, sodium azide, and deaminothyroxine. Sodium deoxycholate inhibits the ATPase activity in a progressive manner; the release of orthophosphate from GTP and UTP is stimulated by low, and inhibited by high, concentrations of deoxycholate, and that from CTP and ITP is unaffected by low, and inhibited by high, concentrations of deoxycholate. Subfractionation of microsomes with deoxycholate into ribosomal, membrane, and soluble fractions reveals a concentration of the triphosphatase activity in the membrane fraction. Rat liver microsomes also catalyze the hydrolysis of the diphosphates of the above nucleosides into the corresponding monophosphates and inorganic orthophosphate. Deoxycholate strongly enhances the GDPase, UDPase, and IDPase activities while causing no activation or even inhibition of the ADPase and CDPase activities. The diphosphatase is unaffected by Na2S2O4 and is inhibited by azide and deaminothyroxine but not by atebrin or chlorpromazine. Upon fractionation of the microsomes with deoxycholate, a large part of the GDPase, UDPase, and IDPase activities is recovered in the soluble fraction. Mechanical disruption of the microsomes with an Ultra Turrax Blender both activates and releases the GDPase, UDPase, and IDPase activities, and the former effect occurs more readily than the latter. The GDPase, UDPase, and IDPase activities of the rat liver cell reside almost exclusively in the microsomal fraction, as revealed by comparative assays of the mitochondrial, microsomal, and final supernatant fractions of the homogenate. The microsomes exhibit relatively low nucleoside monophosphatase and inorganic pyrophosphatase activities, and these are unaffected by deoxycholate or mechanical treatment. Different approaches toward the function of the liver microsomal nucleoside tri- and diphosphatases are reported, and the possible physiological role of the two enzymes is discussed.


1972 ◽  
Vol 153 (2) ◽  
pp. 543-553 ◽  
Author(s):  
W. Levin ◽  
A.Y.H. Lu ◽  
D. Ryan ◽  
S. West ◽  
R. Kuntzman ◽  
...  

1999 ◽  
Vol 340 (2) ◽  
pp. 405-409 ◽  
Author(s):  
Hiroshi YOKOTA ◽  
Hidetomo IWANO ◽  
Mari ENDO ◽  
Tsutomu KOBAYASHI ◽  
Hiroki INOUE ◽  
...  

Bisphenol A, an environmental oestrogenic chemical, was found to conjugate highly with glucuronic acid in male rat liver microsomes studied in vitro. In the various isoforms tested (1A1, 1A3, 1A5, 1A6, 1A7 and 2B1), glucuronidation of bisphenol A and of diethylstilboestrol, a synthetic crystalline compound possessing oestrogenic activity and known to be glucuronidated by liver microsomes, was catalysed by an isoform of UDP-glucuronosyltransferase (UGT), namely UGT2B1, which glucuronidates some endogenous androgens. UGT activity towards bisphenol A in liver microsomes and in UGT2B1 expressed in yeast AH22 cells (22.9 and 0.58 nmol/min per mg of microsomal proteins respectively) was higher than that towards diethylstilboestrol (75.0 and 4.66 pmol/min per mg of microsomal proteins respectively). UGT activities towards both bisphenol A and diethylstilboestrol were distributed mainly in the liver but were also observed at substantial levels in the kidney and testis. Northern blot analysis disclosed the presence of UGT2B1 solely in the liver, and about 65% of the male rat liver microsomal UGT activities towards bisphenol A were absorbed by the anti-UGT2B1 antibody. These results indicate that bisphenol A, in male rat liver, is glucuronidated by UGT2B1, an isoform of UGT.


1984 ◽  
Vol 223 (2) ◽  
pp. 461-465 ◽  
Author(s):  
B Burchell ◽  
N Blanckaert

Highly purified bilirubin UDP-glucuronyltransferase from Wistar-rat liver, when reconstituted with Gunn-rat liver microsomes (microsomal fraction), was able to catalyse the conversion of unesterified bilirubin into both bilirubin monoglucuronide and diglucuronide. Under zero-order kinetic conditions for monoglucuronide formation, the fraction of bilirubin diglucuronide formed by incubation of bilirubin with the reconstituted highly purified transferase accounted for 18% of total bilirubin glucuronides, which was only slightly lower than the fraction of diglucuronides (23% of total bilirubin glucuronides) formed by incubation with hepatic microsomes in the presence of UDP-N-acetylglucosamine or Lubrol. The reconstituted purified enzyme also catalysed the UDP-glucuronic acid-dependent conversion of bilirubin monoglucuronide into diglucuronide and, when bilirubin was incubated with UDP-glucose or UDP-xylose, the formation of bilirubin glucosides and xylosides respectively. These results suggest that a single microsomal bilirubin UDP-glycosyltransferase may be responsible for the formation of bilirubin mono- and di-glycosides.


Sign in / Sign up

Export Citation Format

Share Document