Simultaneous production of buds on mother and daughter cells of Saccharomyces cerevisiae in the presence of hydroxyurea

1979 ◽  
Vol 20 (8) ◽  
pp. 1471-1479 ◽  
Author(s):  
Kyoji Yamada ◽  
Michio Ito
1984 ◽  
Vol 4 (11) ◽  
pp. 2529-2531 ◽  
Author(s):  
B J Brewer ◽  
E Chlebowicz-Sledziewska ◽  
W L Fangman

During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic strains shows that cell cycle phase lengths are independent of cell ploidy and mating type.


1987 ◽  
Vol 7 (10) ◽  
pp. 3566-3573 ◽  
Author(s):  
A E Reynolds ◽  
A W Murray ◽  
J W Szostak

We have examined the replication and segregation of the Saccharomyces cerevisiae 2 microns circle. The amplification of the plasmid at low copy numbers requires site-specific recombination between the 2 microns inverted repeat sequences catalyzed by the plasmid-encoded FLP gene. No other 2 microns gene products are required. The overexpression of FLP in a strain carrying endogenous 2 microns leads to uncontrolled plasmid replication, longer cell cycles, and cell death. Two different assays show that the level of Flp activity decreases with increasing 2 microns copy number. This regulation requires the products of the REP1 and REP2 genes. These gene products also act together to ensure that 2 microns molecules are randomly segregated between mother and daughter cells at cell division.


2019 ◽  
Author(s):  
Benjamin Galeota-Sprung ◽  
Breanna Guindon ◽  
Paul Sniegowski

AbstractMutational load is the depression in a population’s mean fitness that results from the continual influx of deleterious mutations. Here, we directly estimate the mutational load in a population of haploid Saccharomyces cerevisiae that are deficient for mismatch repair. We partition the load in haploids into two components. To estimate the load due to nonlethal mutations, we measure the competitive fitness of hundreds of randomly selected clones from both mismatch repair-deficient and - proficient populations. Computation of the mean clone fitness for the mismatch repair-deficient strain permits an estimation of the nonlethal load, and the histogram of fitness provides an interesting visualization of a loaded population. In a separate experiment, in order to estimate the load due to lethal mutations (i.e. the lethal mutation rate), we manipulate thousands of individual pairs of mother and daughter cells and track their fates. These two approaches yield point estimates for the two contributors to load, and the addition of these estimates is nearly equal to the separately measured short-term competitive fitness deficit for the mismatch repair-deficient strain. This correspondence suggests that there is no need to invoke direct fitness effects to explain the fitness difference between mismatch repair-deficient and - proficient strains. Assays in diploids are consistent with deleterious mutations in diploids tending towards recessivity. These results enhance our understanding of mutational load, a central population genetics concept, and we discuss their implications for the evolution of mutation rates.


1970 ◽  
Vol 16 (4) ◽  
pp. 347-350 ◽  
Author(s):  
TOMOMICHI YANAGITA ◽  
MORIMASA YAGISAWA ◽  
SHINSHI OISHI ◽  
NOBUNDO SANDO ◽  
TSUNEJI SUTO

Genetics ◽  
1995 ◽  
Vol 140 (4) ◽  
pp. 1259-1275
Author(s):  
M J Blacketer ◽  
P Madaule ◽  
A M Myers

Abstract A genetic analysis was undertaken to investigate the mechanisms controlling cellular morphogenesis in Saccharomyces cerevisiae. Sixty mutant strains exhibiting abnormally elongated cell morphology were isolated. The cell elongation phenotype in at least 26 of the strains resulted from a single recessive mutation. These mutations, designated generically elm (elongated morphology), defined 14 genes; two of these corresponded to the previously described genes GRR1 and CDC12. Genetic interactions between mutant alleles suggest that several ELM genes play roles in the same physiological process. The cell and colony morphology and growth properties of many elm mutant strains are similar to those of wild-type yeast strains after differentiation in response to nitrogen limitation into the pseudohyphal form. Each elm mutation resulted in multiple characteristics of pseudohyphal cells, including elongated cell shape, delay in cell separation, simultaneous budding of mother and daughter cells, a unipolar budding pattern, and/or the ability to grow invasively beneath the agar surface. Mutations in 11 of the 14 ELM gene loci potentiated pseudohyphal differentiation in nitrogen-limited medium. Thus, a subset of the ELM genes are likely to affect control or execution of a defined morphologic differentiation pathway in S. cerevisiae.


2021 ◽  
Author(s):  
David Bunk ◽  
Julian Moriasy ◽  
Felix Thoma ◽  
Christopher Jakubke ◽  
Christof Osman ◽  
...  

Here, we introduce YeastMate, a user-friendly deep learning- based application for automated detection and segmentation of Saccharomyces cerevisiae cells and their mating and budding events in microscopy images. We build upon Mask R-CNN with a custom segmentation head for the subclassification of mother and daughter cells during lifecycle transitions. YeastMate can be used directly as a Python library or through a stand-alone GUI application and a Fiji plugin as easy to use frontends. The source code for YeastMate is freely available at https://github.com/hoerlteam/YeastMate under the MIT license. We offer packaged installers for our whole software stack for Windows, macOS and Linux. A detailed user guide is available at https://yeastmate.readthedocs.io.


1987 ◽  
Vol 7 (10) ◽  
pp. 3566-3573
Author(s):  
A E Reynolds ◽  
A W Murray ◽  
J W Szostak

We have examined the replication and segregation of the Saccharomyces cerevisiae 2 microns circle. The amplification of the plasmid at low copy numbers requires site-specific recombination between the 2 microns inverted repeat sequences catalyzed by the plasmid-encoded FLP gene. No other 2 microns gene products are required. The overexpression of FLP in a strain carrying endogenous 2 microns leads to uncontrolled plasmid replication, longer cell cycles, and cell death. Two different assays show that the level of Flp activity decreases with increasing 2 microns copy number. This regulation requires the products of the REP1 and REP2 genes. These gene products also act together to ensure that 2 microns molecules are randomly segregated between mother and daughter cells at cell division.


Microbiology ◽  
2003 ◽  
Vol 149 (11) ◽  
pp. 3129-3137 ◽  
Author(s):  
Chris D. Powell ◽  
David E. Quain ◽  
Katherine A. Smart

Ageing in budding yeast is not determined by chronological lifespan, but by the number of times an individual cell is capable of dividing, termed its replicative capacity. As cells age they are subject to characteristic cell surface changes. Saccharomyces cerevisiae reproduces asexually by budding and as a consequence of this process both mother and daughter cell retain chitinous scar tissue at the point of cytokinesis. Daughter cells exhibit a frail structure known as the birth scar, while mother cells display a more persistent bud scar. The number of bud scars present on the cell surface is directly related to the number of times a cell has divided and thus constitutes a biomarker for replicative cell age. It has been proposed that the birth scar may be subject to stretching caused by expansion of the daughter cell; however, no previous analysis of the effect of cell age on birth or bud scar size has been reported. This paper provides evidence that scar tissue expands with the cell during growth. It is postulated that symmetrically arranged breaks in the bud scar allow these rigid chitinous structures to expand without compromising cellular integrity.


1984 ◽  
Vol 4 (11) ◽  
pp. 2529-2531
Author(s):  
B J Brewer ◽  
E Chlebowicz-Sledziewska ◽  
W L Fangman

During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic strains shows that cell cycle phase lengths are independent of cell ploidy and mating type.


Genetics ◽  
1994 ◽  
Vol 136 (1) ◽  
pp. 75-86 ◽  
Author(s):  
J D Dinman ◽  
R B Wickner

Abstract A special site on the (+) strand of the L-A dsRNA virus induces about 2% of ribosomes translating the gag open reading frame to execute a -1 frameshift and thus produce the viral gag-pol fusion protein. Using constructs in which a -1 ribosomal frameshift at this site was necessary for expression of lacZ we isolated chromosomal mutants in which the efficiency of frameshifting was increased. These mutants comprise eight genes, named mof (maintenance of frame). The mof1-1, mof2-1, mof4-1, mof5-1 and mof6-1 strains cannot maintain M1 dsRNA at 30 degrees, but, paradoxically, do not lose L-A. The mof2-1, mof5-1 and mof6-1 strains are temperature sensitive for growth at 37 degrees, and all three show striking cell cycle phenotypes. The mof2-1 strains arrest with mother and daughter cells almost equal in size, mof5-1 arrests with multiple buds and mof6-1 arrests as single large unbudded cells. mof2-1 and mof5-1 strains are also Pet-. The mof mutations show differential effects on various frameshifting signals.


Sign in / Sign up

Export Citation Format

Share Document