scholarly journals FOREST unbiased Galactic plane imaging survey with the Nobeyama 45 m telescope (FUGIN). VI. Dense gas and mini-starbursts in the W 43 giant molecular cloud complex

Author(s):  
Mikito Kohno ◽  
Kengo Tachihara ◽  
Kazufumi Torii ◽  
Shinji Fujita ◽  
Atsushi Nishimura ◽  
...  

Abstract We performed new large-scale 12CO, 13CO, and C18O J = 1–0 observations of the W 43 giant molecular cloud complex in the tangential direction of the Scutum arm (l ∼30°) as a part of the FUGIN project. The low-density gas traced by 12CO is distributed over 150 pc × 100 pc (l × b), and has a large velocity dispersion (20–30 km s−1). However, the dense gas traced by C18O is localized in the W 43 Main, G30.5, and W 43 South (G29.96−0.02) high-mass star-forming regions in the W 43 giant molecular cloud (GMC) complex, which have clumpy structures. We found at least two clouds with a velocity difference of ∼10–20 km s−1, both of which are likely to be physically associated with these high-mass star-forming regions based on the results of high 13CO J = 3–2 to J = 1–0 intensity ratio and morphological correspondence with the infrared dust emission. The velocity separation of these clouds in W 43 Main, G30.5, and W 43 South is too large for each cloud to be gravitationally bound. We also revealed that the dense gas in the W 43 GMC has a high local column density, while “the current SFE” (star formation efficiency) of the entire GMC is low ($\sim\!\! 4\%$) compared with the W 51 and M 17 GMC. We argue that the supersonic cloud–cloud collision hypothesis can explain the origin of the local mini-starbursts and dense gas formation in the W 43 GMC complex.

Author(s):  
A J Rigby ◽  
N Peretto ◽  
R Adam ◽  
P Ade ◽  
M Anderson ◽  
...  

Abstract Determining the mechanism by which high-mass stars are formed is essential for our understanding of the energy budget and chemical evolution of galaxies. By using the New IRAM KIDs Array 2 (NIKA2) camera on the Institut de Radio Astronomie Millimétrique (IRAM) 30-m telescope, we have conducted high-sensitivity and large-scale mapping of a fraction of the Galactic plane in order to search for signatures of the transition between the high- and low-mass star-forming modes. Here, we present the first results from the Galactic Star Formation with NIKA2 (GASTON) project, a Large Programme at the IRAM 30-m telescope which is mapping ≈2 deg2 of the inner Galactic plane (GP), centred on ℓ = 23${_{.}^{\circ}}$9, b = 0${_{.}^{\circ}}$05, as well as targets in Taurus and Ophiuchus in 1.15 and 2.00 mm continuum wavebands. In this paper we present the first of the GASTON GP data taken, and present initial science results. We conduct an extraction of structures from the 1.15 mm maps using a dendrogram analysis and, by comparison to the compact source catalogues from Herschel survey data, we identify a population of 321 previously-undetected clumps. Approximately 80 per cent of these new clumps are 70 μm-quiet, and may be considered as starless candidates. We find that this new population of clumps are less massive and cooler, on average, than clumps that have already been identified. Further, by classifying the full sample of clumps based upon their infrared-bright fraction – an indicator of evolutionary stage – we find evidence for clump mass growth, supporting models of clump-fed high-mass star formation.


Author(s):  
Atsushi Nishimura ◽  
Shinji Fujita ◽  
Mikito Kohno ◽  
Daichi Tsutsumi ◽  
Tetsuhiro Minamidani ◽  
...  

Abstract M 16, the Eagle Nebula, is an outstanding H ii region which exhibits extensive high-mass star formation and hosts remarkable “pillars.” We herein obtained new 12COJ = 1–0 data for the region observed with NANTEN2, which were combined with the 12COJ = 1–0 data obtained using the FOREST unbiased galactic plane imaging with Nobeyama 45 m telescope (FUGIN) survey. These observations revealed that a giant molecular cloud (GMC) of ∼1.3 × 105 M⊙ is associated with M 16, which extends for 30 pc perpendicularly to the galactic plane, at a distance of 1.8 kpc. This GMC can be divided into the northern (N) cloud, the eastern (E) filament, the southeastern (SE) cloud, the southeastern (SE) filament, and the southern (S) cloud. We also found two velocity components (blueshifted and redshifted components) in the N cloud. The blueshifted component shows a ring-like structure, and the redshifted one coincides with the intensity depression of the ring-like structure. The position–velocity diagram of the components showed a V-shaped velocity feature. The spatial and velocity structures of the cloud indicated that two different velocity components collided with each other at a relative velocity of 11.6 km s−1. The timescale of the collision was estimated to be ∼4 × 105 yr. The collision event reasonably explains the formation of the O9V star ALS 15348, as well as the shape of the Spitzer bubble N19. A similar velocity structure was found in the SE cloud, which is associated with the O7.5V star HD 168504. In addition, the complementary distributions of the two velocity components found in the entire GMC suggested that the collision event occurred globally. On the basis of the above results, we herein propose a hypothesis that the collision between the two components occurred sequentially over the last several 106 yr and triggered the formation of O-type stars in the NGC 6611 cluster in M 16.


2012 ◽  
Vol 8 (S292) ◽  
pp. 50-50
Author(s):  
Vicki Lowe ◽  
Maria R. Cunningham ◽  
James S. Urquhart ◽  
Shinji Horiuchi

AbstractHigh-mass stars are known to be born within giant molecular clouds (GMCs); However, the exact processes involved in forming a high-mass star are still not well understood. It is clear that high-mass stars do not form in isolation, and that the processes surrounding high-mass star formation may affect the environment of the entire molecular cloud. We are studying the GMC associated with RCW 106 (G333), which is one of the most active massive-star formation regions in the Galactic plane. This GMC, located at l = 333° b = − 0.5°, has been mapped in over 20 molecular line transitions with the Mopra radio telescope (83-110 GHz), in Australia, and with the Swedish-ESO Submillimeter Telescope (SEST) in the 1.2 mm cool dust continuum. The region is also within the Spitzer GLIMPSE infrared survey (3.6, 4.5, 5.8, and 8.0 μm) area. We have decomposed the dust continuum using a clump-finding algorithm (CLUMPFIND), and are using the multiple molecular line traditions from the Mopra radio telescope to classify the type and stage of star formation taking place therein. Having accurate physical temperatures of the star forming clumps is essential to constrain other parameters to within useful limits. To achieve this, we have obtained pointed NH3 observations from the Tidbinbilla 70-m radio telescope, in Australia, towards these clumps.


2012 ◽  
Vol 8 (S287) ◽  
pp. 296-297
Author(s):  
Jian-jun Zhou ◽  
Jarken Esimbek ◽  
Gang Wu

AbstractWater masers are good tracers of high-mass star-forming regions. Water maser VLBI observations provide a good probe for studying high-mass star formation and galactic structure. We plan to make a blind survey toward the northern Galactic plane in future years using the 25 m radio telescope of the Xinjiang Astronomical Observatory. We will select some water maser sources discovered in the survey and perform high resolution observations to study the gas kinematics close to high-mass protostars.


2020 ◽  
Vol 497 (2) ◽  
pp. 1348-1364
Author(s):  
W S Tan ◽  
E D Araya ◽  
L E Lee ◽  
P Hofner ◽  
S Kurtz ◽  
...  

ABSTRACT We report on one of the highest sensitivity surveys for molecular lines in the frequency range 6.0–7.4 GHz conducted to date. The observations were done with the 305- m Arecibo Telescope toward a sample of 12 intermediate-/high-mass star-forming regions. We searched for a large number of transitions of different molecules, including CH3OH and OH. The low rms noise of our data ($\sim \!5\,$ mJy for most sources and transitions) allowed detection of spectral features that have not been seen in previous lower sensitivity observations of the sources, such as detection of excited OH and 6.7 GHz CH3OH absorption. A review of 6.7 GHz CH3OH detections indicates an association between absorption and radio continuum sources in high-mass star-forming regions, although selection biases in targeted projects and low sensitivity of blind surveys imply incompleteness. Absorption of excited OH transitions was also detected toward three sources. In particular, we confirm a broad 6.035 GHz OH absorption feature in G34.26+0.15 characterized by an asymmetric blueshifted wing indicative of expansion, perhaps a large-scale outflow in this H ii region.


2012 ◽  
Vol 8 (S287) ◽  
pp. 286-287 ◽  
Author(s):  
Miranda K. Dunham ◽  

AbstractWe present preliminary results of a search for 22 GHz water masers toward 1400 star-forming regions seen in the Bolocam Galactic Plane Survey (BGPS) using the Green Bank Telescope (GBT). The BGPS is a blind survey of the Northern Galactic plane in 1.1 mm thermal dust emission that has cataloged star-forming regions at all evolutionary stages. Further information is required to determine the stage of each BGPS source. Since water masers are produced by outflows from low and high-mass star forming regions, their presence is a key component of determining whether the BGPS sources are forming stars and which evolutionary stage they are in. We present preliminary detection statistics, basic properties of the water masers, and correlations with physical properties determined from the 1.1 mm emission and ammonia observations obtained concurrently with the water masers on the GBT.


Author(s):  
Kazuki Sato ◽  
Tetsuo Hasegawa ◽  
Tomofumi Umemoto ◽  
Hiro Saito ◽  
Nario Kuno ◽  
...  

Abstract We have developed a method to make a spectral-line-based survey of hot cores, which represent an important stage of high-mass star formation, and applied the method to the data of the FUGIN (FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope) survey. First, we select hot core candidates by searching the FUGIN data for the weak hot core tracer lines (HNCO and CH3CN) by stacking, and then we conduct follow-up pointed observations on these candidates in C34S, SO, OCS, HC3N, HNCO, CH3CN, and CH3OH J = 2–1 and J = 8–7 lines to confirm and characterize them. We applied this method to the l = 10°–20° portion of the FUGIN data and identified 22 “HotCores” (compact sources with more than two significant detections of the hot core tracer lines, i.e., SO, OCS, HC3N, HNCO, CH3CN, or CH3OH J = 8–7 lines) and 14 “DenseClumps” (sources with more than two significant detection of C34S, CH3OH J = 2–1, or the hot core tracer lines). The identified HotCores are found to be associated with signposts of high-mass star formation such as ATLASGAL clumps, WISE H ii regions, and Class II methanol masers. Many of the FUGIN HotCores are identified with the Herschel Hi-GAL clumps with a median mass of 6.8 × 102 M⊙ and a median bolometric luminosity of 7.4 × 103 L⊙. Five of the seven HotCores with stronger CH3CN lines exhibit elevated gas temperatures of 50–100 K. These observations suggest that FUGIN HotCores are closely related to the formation of stars with medium to high mass. For those associated with ATLASGAL clumps, their bolometric luminosity to clump mass ratios are consistent with the star formation stages centered at the hot core phase. The catalog of FUGIN HotCores provides a useful starting point for further statistical studies and detailed observations of high-mass star forming regions.


Author(s):  
E. Nikoghosyan ◽  
N. Azatyan ◽  
H. Harutyunian ◽  
D. Baghdasaryan ◽  
D. Andreasyan

The Hi-GAL provides an opportunity to make a complete and unbiased view of the continuum emission in the Galactic plane in five bands: 70, 160, 250, 350, and 500 μm. Our research focuses on two of star-forming regions. The first one is the molecular cloud, which includes G45.12+0.13 and G45.07+0.13 UCHII regions. Using the Modified blackbody fitting on Herschel images obtained in four bands: 160, 250, 350, and 500 μm, we determined the distribution of N(H2) hydrogen column density and Td dust temperature. The maps of N(H2) and Td show that UCHII regions clearly stand out against the general background of the molecular cloud with a relatively low density (from 1.0 x 1023 to 3.0 x 1023 cm-2) and significantly higher temperature (up to 100 K), what is fully consistent with the basic concept of UCHII regions about the presence of a hot, high mass stellar source and stellar wind, which leads to the blowing out of matter. The second one is the elongated star-forming region, which includes five stellar subgroups around IRAS 05184+3635, 05177+3636, 05168+3634, 05162+3639 and 05156+3643 sources. Here, on the contrary, the N(H2) is noticeably higher (from 1.0 x 1023 to 5.0 x 1023 cm-2) than in the surrounding molecular cloud and the Td does not exceed 25 K.


1987 ◽  
Vol 115 ◽  
pp. 161-163 ◽  
Author(s):  
J. B. Whiteoak ◽  
F. F. Gardner ◽  
J. R. Forster ◽  
P. Palmer ◽  
V. Pankonin

H2CO and OH masers in the H II-region/molecular-cloud complex Sgr B2 have been observed with the VLA and combined with other observations of OH and H2O masers. It is found that groups of the masers and compact continuum components are located along a north-south line extending across the complex. The overall alignment suggests that star formation is being triggered by a single large-scale event such as an interaction between molecular clouds.


2008 ◽  
Vol 60 (6) ◽  
pp. 1285-1296 ◽  
Author(s):  
Kazuo Sorai ◽  
Asao Habe ◽  
Hiroyuki Nishitani ◽  
Keita Hosaka ◽  
Yoshimasa Watanabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document