Dilemma of Addiction and Respiratory Depression in the Treatment of Pain: A Prototypical Endomorphin as a New Approach

Pain Medicine ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 992-1004 ◽  
Author(s):  
Lynn Webster ◽  
William K Schmidt

Abstract Objective Although mu-opioid receptor agonists have been the mainstay of analgesic regimens for moderate to severe pain, they are associated with serious side effects, risks, and limitations. We evaluate the most serious risks associated with conventional opioids and compare these with the pharmacology of CYT-1010, a prototypical endomorphin and mu-opioid receptor agonist. Results Addiction and respiratory depression are serious risks of traditional mu-opioid analgesics. Mitigation strategies have been inadequate at addressing the opioid crisis and may interfere with the effective treatment of pain. Improved understanding of mu-opioid receptor biology and the discovery in 1997 of an additional and unique family of endogenous opioid peptides (endomorphins) have provided a pathway for dissociating analgesia from opioid-related adverse events and developing new classes of mu-opioid receptor agonists that use biased signaling and/or target novel sites to produce analgesia with reduced side effect liability. Endomorphin-1 and -2 are endogenous opioid peptides highly selective for mu-opioid receptors that exhibit potent analgesia with reduced side effects. CYT-1010 is a cyclized, D-lysine-containing analog of endomorphin-1 with a novel mechanism of action targeting traditional mu- and exon 11/truncated mu-opioid receptor 6TM variants. CYT-1010 preclinical data have demonstrated reduced abuse potential and analgesic potency exceeding that of morphine. In an initial phase 1 clinical study, CYT-1010 demonstrated significant analgesia vs baseline and no respiratory depression at the dose levels tested. Conclusions CYT-1010 and other novel mu-opioid receptor agonists in clinical development are promising alternatives to conventional opioids that may offer the possibility of safer treatment of moderate to severe pain.

2018 ◽  
Vol 87 (1) ◽  
pp. 62-64
Author(s):  
Chloe Gui ◽  
Sean Wong

Opioids are considered mainstay treatments for acute and terminal pain. In recent decades, however, overprescription and the increasing prevalence of illicit opioids has propelled North America into a state of “opioid crisis.” Along with the analgesic benefits, opioid use also commonly induces a number of side effects. Respiratory depression is an especially dangerous and potentially lethal example. The development of painkillers with improved safety profiles is thus a priority. Downstream to the mu-opioid receptor, which is responsible for the analgesic effects of opioids, β-arrestin-2 signaling has been suggested to be important for the manifestation of side effects, including respiratory depression. Two novel mu-opioid receptor agonists, TRV130 and PMZ21, have recently been reported to preferentially promote G protein-coupling over β-arrestin-2 signaling, thereby promoting analgesia with reduced side effects. TRV130 has been found in clinical trials to be more potent than morphine but safer in the setting of acute moderate-to-severe pain and is currently under New Drug Application review in the U.S. PMZ21 has shown promising and unique pain-relieving effects in mouse models, but further investigation is warranted to examine whether its therapeutic effects and safety profile are translatable to humans.


2021 ◽  
Vol 118 (16) ◽  
pp. e2000017118
Author(s):  
Ram Kandasamy ◽  
Todd M. Hillhouse ◽  
Kathryn E. Livingston ◽  
Kelsey E. Kochan ◽  
Claire Meurice ◽  
...  

Positive allosteric modulators (PAMs) of the mu-opioid receptor (MOR) have been hypothesized as potentially safer analgesics than traditional opioid drugs. This is based on the idea that PAMs will promote the action of endogenous opioid peptides while preserving their temporal and spatial release patterns and so have an improved therapeutic index. However, this hypothesis has never been tested. Here, we show that a mu-PAM, BMS-986122, enhances the ability of the endogenous opioid Methionine-enkephalin (Met-Enk) to stimulate G protein activity in mouse brain homogenates without activity on its own and to enhance G protein activation to a greater extent than β-arrestin recruitment in Chinese hamster ovary (CHO) cells expressing human mu-opioid receptors. Moreover, BMS-986122 increases the potency of Met-Enk to inhibit GABA release in the periaqueductal gray, an important site for antinociception. We describe in vivo experiments demonstrating that the mu-PAM produces antinociception in mouse models of acute noxious heat pain as well as inflammatory pain. These effects are blocked by MOR antagonists and are consistent with the hypothesis that in vivo mu-PAMs enhance the activity of endogenous opioid peptides. Because BMS-986122 does not bind to the orthosteric site and has no inherent agonist action at endogenously expressed levels of MOR, it produces a reduced level of morphine-like side effects of constipation, reward as measured by conditioned place preference, and respiratory depression. These data provide a rationale for the further exploration of the action and safety of mu-PAMs as an innovative approach to pain management.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Jeremy C. Cornelissen ◽  
Bruce E. Blough ◽  
Laura M. Bohn ◽  
S. Stevens Negus ◽  
Matthew L. Banks

2021 ◽  
Author(s):  
Nicholas S. Akins ◽  
Nisha Mishra ◽  
Hannah M. Harris ◽  
Narendar Dudhipala ◽  
Seong Jong Kim ◽  
...  

Analgesia is commonly mediated through the mu or kappa opioid receptor agonism. Unfortunately, selective mu or kappa receptor agonists often cause harmful side effects. Recently, ligands exhibiting dual agonism to the opioid receptors, such as to mu and kappa, or to mu and delta, have been suggested to temper undesirable adverse effects while retaining analgesic activity. Herein we report an introduction of various 6,5-fused rings to C2 of the salvinorin scaffold <i>via</i> an ester linker. <i>In vitro</i> studies showed that some of these compounds have dual agonism on kappa and mu opioid receptors, while some have triple agonism on kappa, mu, and delta. <i>In vivo </i>studies on the lead dual kappa and mu opioid receptor agonist, compound <b>10</b>, showed that it<b> </b>produced analgesic activity while avoiding anxiogenic effects in murine models, thus providing further strong evidence for the therapeutic advantages of dual opioid receptor agonists over selective opioid receptor agonists.


1997 ◽  
Vol 235 (3) ◽  
pp. 567-570 ◽  
Author(s):  
Hunter C. Champion ◽  
James E. Zadina ◽  
Abba J. Kastin ◽  
Laszlo Hackler ◽  
Lin-Jun Ge ◽  
...  

ChemMedChem ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 155-161 ◽  
Author(s):  
Mengjun Ma ◽  
Xiang Li ◽  
Kun Tong ◽  
Jingchao Cheng ◽  
Zixing Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document