plane contact
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 18)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 2002 (1) ◽  
pp. 012029
Author(s):  
D D Xie ◽  
K Zhu ◽  
Y H An ◽  
P Li ◽  
X Q Jin

Author(s):  
Nils Cwiekala ◽  
David A Hills

The state of stress present in an elastic half-plane contact problem, where one or both bodies is subject to remote tension has been investigated, both for conditions of full stick and partial slip. The state of stress present near the contact edges is studied for different loading scenarios in an asymptotic form. This is of practical relevance to the study of contacts experiencing fretting fatigue, and enables the environment in which cracks nucleate to be specified.


2021 ◽  
Vol 83 (4) ◽  
pp. 462-470
Author(s):  
V.B. Zelentsov ◽  
A.D. Zagrebneva ◽  
P.A. Lapina ◽  
S.M. Aizikovich ◽  
Wang Yun-Che

Investigation of the function of the relative volume of pores under the load action is carried out on the base of the solution of the static contact problem of the indentation of a layer made of a material with voids or unfilled pores. A rigid strip indenter with a flat base is pressed into a porous layer that is adhered to a non-deformable base along the lower boundary. The formulated 3D problem of the indentation of a porous layer is reduced to solving the plane contact problem of the indentation of a porous strip. The plane contact problem is reduced to solving an integral equation for unknown contact stresses, the solution of which is constructed by the method of successive approximations in the form of an asymptotic expansion in the dimensionless parameter of the problem. The obtained contact stresses and the force acting on the indenter made it possible to study the influence of the nonclassical moduli of the layer porous material (the connectivity modulus and pore rigidity modulus) on the main contact characteristics and on the distribution of the function of the relative pore volume. The connectivity modulus increase leads to an increase in the compliance of the layer porous material, the pore rigidity modulus increase leads to an increase in the rigidity of the layer porous material. The maximum value of the distribution function of the relative pore volume in the porous material of the layer is achieved under the indenter base centre, regardless of the change in the porous material non-classical moduli.


Author(s):  
Zhiqiang Niu ◽  
Wenlong Zhou ◽  
Chenglin Wang ◽  
Ziwen cao ◽  
Qi Yang ◽  
...  

2019 ◽  
Vol 25 (3) ◽  
pp. 664-681 ◽  
Author(s):  
Xiaobao Li ◽  
Lijian Jiang ◽  
Changwen Mi

This article presents a semianalytical solution to a half-plane contact problem subjected to an arbitrarily distributed surface traction. The half-plane boundary is treated as a material surface of the Steigmann–Ogden type. Under the assumption of plane strain condition, the problem is formulated by coupling the methods of an Airy stress function and Fourier integral transforms. Stresses and displacements in the form of semi-infinite integrals are derived. A non-classical Flamant solution that is able to simultaneously account for the surface tension, membrane stiffness, and bending rigidity of the half-plane boundary is derived through limit analysis on the half-plane contact problem owing to a uniform surface traction. The fundamental Flamant solution is further integrated for tackling two half-plane contact problems owing to classical contact pressures corresponding to a rigid cylindrical roller and a rigid flat-ended punch. The resultant semi-infinite integrals are integrated by the joint use of the Gauss–Legendre numerical quadrature and the Euler transformation algorithm. Extensive parametric studies are conducted for comparing and contrasting the effects of Gurtin–Murdoch and Steigmann–Ogden surface mechanical models. The major observations and conclusions are two-fold. First, the introduction of either surface mechanical model results in size-dependent elastic fields. Second, the incorporation of the curvature-dependent nature of the half-plane boundary leads to bounded stresses and displacements in the fundamental Flamant solution. This is in contrast to the otherwise singular classical and Gurtin–Murdoch solutions. For all four case studies, the Steigmann–Ogden surface model also results in much smoother displacement and stress variations, indicating the significance of surface bending rigidity in nanoscale contact problems.


Sign in / Sign up

Export Citation Format

Share Document