scholarly journals Numerical solution of a singular integral equation with Cauchy kernel in the plane contact problem

2010 ◽  
Vol 69 (1) ◽  
pp. 79-89 ◽  
Author(s):  
M. R. Capobianco ◽  
G. Criscuolo
2008 ◽  
Vol 8 (2) ◽  
pp. 143-154 ◽  
Author(s):  
P. KARCZMAREK

AbstractIn this paper, Jacobi and trigonometric polynomials are used to con-struct the approximate solution of a singular integral equation with multiplicative Cauchy kernel in the half-plane.


2017 ◽  
Vol 24 (2) ◽  
pp. 448-464 ◽  
Author(s):  
Jie Yan ◽  
Changwen Mi ◽  
Zhixin Liu

In this work, we examine the receding contact between a homogeneous elastic layer and a half-plane substrate reinforced by a functionally graded coating. The material properties of the coating are allowed to vary exponentially along its thickness. A distributed traction load applied over a finite segment of the layer surface presses the layer and the coated substrate against each other. It is further assumed that the receding contact between the layer and the coated substrate is frictionless. In the absence of body forces, Fourier integral transforms are used to convert the governing equations and boundary conditions of the plane receding contact problem into a singular integral equation with the contact pressure and contact size as unknowns. Gauss–Chebyshev quadrature is subsequently employed to discretize both the singular integral equation and the force equilibrium condition at the contact interface. An iterative algorithm based on the method of steepest descent has been proposed to numerically solve the system of algebraic equations, which is linear for the contact pressure but nonlinear for the contact size. Extensive case studies are performed with respect to the coating inhomogeneity parameter, geometric parameters, material properties, and the extent of the indentation load. As a result of the indentation, the elastic layer remains in contact with the coated substrate over only a finite interval. Exterior to this region, the layer and the coated substrate lose contact. Nonetheless, the receding contact size is always larger than that of the indentation traction. To validate the theoretical solution, we have also developed a finite-element model to solve the same receding contact problem. Numerical results of finite-element modeling and theoretical development are compared in detail for a number of parametric studies and are found to agree very well with each other.


2018 ◽  
Vol 18 (4) ◽  
pp. 741-752
Author(s):  
Dorota Pylak ◽  
Paweł Karczmarek ◽  
Paweł Wójcik

AbstractMultidimensional singular integral equations (SIEs) play a key role in many areas of applied science such as aerodynamics, fluid mechanics, etc. Solving an equation with a singular kernel can be a challenging problem. Therefore, a plethora of methods have been proposed in the theory so far. However, many of them are discussed in the simplest cases of one–dimensional equations defined on the finite intervals. In this study, a very efficient method based on trigonometric interpolating polynomials is proposed to derive an approximate solution of a SIE with a multiplicative Cauchy kernel defined on the Euclidean plane. Moreover, an estimation of the error of the approximated solution is presented and proved. This assessment and an illustrating example show the effectiveness of our proposal.


Author(s):  
David Elliott

AbstractThe principal result of this paper states sufficient conditions for the convergence of the solutions of certain linear algebraic equations to the solution of a (linear) singular integral equation with Cauchy kernel. The motivation for this study has been the need to provide a convergence theory for a collocation method applied to the singular integral equation taken over the arc (−1, 1). However, much of the analysis will be applicable both to other approximation methods and to singular integral equations taken over other arcs or contours. An estimate for the rate of convergence is also given.


2002 ◽  
Vol 69 (3) ◽  
pp. 303-308 ◽  
Author(s):  
C. Li ◽  
Z. Duan ◽  
Z. Zou

In this paper, the dynamic response of a penny-shaped interface crack in bonded dissimilar homogeneous half-spaces is studied. It is assumed that the two materials are bonded together with such a inhomogeneous interlayer that makes the elastic modulus in the direction perpendicular to the crack surface is continuous throughout the space. The crack surfaces are assumed to be subjected to torsional impact loading. Laplace and Hankel integral transforms are applied combining with a dislocation density function to reduce the mixed boundary value problem into a singular integral equation with a generalized Cauchy kernel in Laplace domain. By solving the singular integral equation numerically and using a numerical Laplace inversion technique, the dynamic stress intensity factors are obtained. The influences of material properties and interlayer thickness on the dynamic stress intensity factor are investigated.


Sign in / Sign up

Export Citation Format

Share Document