Tamagawa Products of Elliptic Curves Over ℚ

Author(s):  
Michael Griffin ◽  
Ken Onowei-Lun Tsai ◽  
Wei-Lun Tsai

Abstract We explicitly construct the Dirichlet series $$\begin{equation*}L_{\mathrm{Tam}}(s):=\sum_{m=1}^{\infty}\frac{P_{\mathrm{Tam}}(m)}{m^s},\end{equation*}$$ where $P_{\mathrm{Tam}}(m)$ is the proportion of elliptic curves $E/\mathbb{Q}$ in short Weierstrass form with Tamagawa product m. Although there are no $E/\mathbb{Q}$ with everywhere good reduction, we prove that the proportion with trivial Tamagawa product is $P_{\mathrm{Tam}}(1)={0.5053\dots}$. As a corollary, we find that $L_{\mathrm{Tam}}(-1)={1.8193\dots}$ is the average Tamagawa product for elliptic curves over $\mathbb{Q}$. We give an application of these results to canonical and Weil heights.

2018 ◽  
Vol 154 (10) ◽  
pp. 2045-2054
Author(s):  
Andrew Snowden ◽  
Jacob Tsimerman

Given a non-isotrivial elliptic curve over an arithmetic surface, one obtains a lisse $\ell$-adic sheaf of rank two over the surface. This lisse sheaf has a number of straightforward properties: cyclotomic determinant, finite ramification, rational traces of Frobenius elements, and somewhere not potentially good reduction. We prove that any lisse sheaf of rank two possessing these properties comes from an elliptic curve.


2015 ◽  
Vol 219 ◽  
pp. 269-302
Author(s):  
Kenichi Bannai ◽  
Hidekazu Furusho ◽  
Shinichi Kobayashi

AbstractConsider an elliptic curve defined over an imaginary quadratic fieldKwith good reduction at the primes abovep≥ 5 and with complex multiplication by the full ring of integersof K. In this paper, we constructp-adic analogues of the Eisenstein-Kronecker series for such an elliptic curve as Coleman functions on the elliptic curve. We then provep-adic analogues of the first and second Kronecker limit formulas by using the distribution relation of the Kronecker theta function.


2016 ◽  
Vol 161 ◽  
pp. 135-145
Author(s):  
Amanda Clemm ◽  
Sarah Trebat-Leder

2016 ◽  
Vol 12 (02) ◽  
pp. 445-463 ◽  
Author(s):  
Sungjin Kim

For a field of definition [Formula: see text] of an abelian variety [Formula: see text] and prime ideal [Formula: see text] of [Formula: see text] which is of a good reduction for [Formula: see text], the structure of [Formula: see text] as abelian group is: [Formula: see text] where [Formula: see text], [Formula: see text], and [Formula: see text] for [Formula: see text]. We are interested in finding an asymptotic formula for the number of prime ideals [Formula: see text] with [Formula: see text], [Formula: see text] has a good reduction at [Formula: see text], [Formula: see text]. We succeed in proving this under the assumption of the Generalized Riemann Hypothesis (GRH). Unconditionally, we achieve a short range asymptotic for abelian varieties of CM type, and the full cyclicity theorem for elliptic curves over a number field containing the CM field.


2015 ◽  
Vol 11 (04) ◽  
pp. 1149-1164 ◽  
Author(s):  
Nao Takeshi

We give a criterion for cubic fields over which there exist no elliptic curves with good reduction everywhere, and we construct a certain infinite family of cubic fields over which there exist elliptic curves with good reduction everywhere.


1992 ◽  
Vol 293 (1) ◽  
pp. 331-342 ◽  
Author(s):  
Salvador Comalada ◽  
Enric Nart

Author(s):  
R. G. E. Pinch

In this paper we list the elliptic curves defined over Q √ − 1, Q√ −2 or Q√ − 3 which have good reduction away from 2. The possible invariants of such curves are given in Table 1, and their minimal equations in Tables 2, 3 and 4. These extend (and agree with) results of Ogg[4] and Stroeker [10], by a different method.


Sign in / Sign up

Export Citation Format

Share Document