scholarly journals ON THE MORITA REDUCED VERSIONS OF SKEW GROUP ALGEBRAS OF PATH ALGEBRAS

2020 ◽  
Vol 71 (3) ◽  
pp. 1009-1047
Author(s):  
Patrick Le Meur

Abstract Let $R$ be the skew group algebra of a finite group acting on the path algebra of a quiver. This article develops both theoretical and practical methods to do computations in the Morita-reduced algebra associated to $R$. Reiten and Riedtmann proved that there exists an idempotent $e$ of $R$ such that the algebra $eRe$ is both Morita equivalent to $R$ and isomorphic to the path algebra of some quiver, which was described by Demonet. This article gives explicit formulas for the decomposition of any element of $eRe$ as a linear combination of paths in the quiver described by Demonet. This is done by expressing appropriate compositions and pairings in a suitable monoidal category, which takes into account the representation theory of the finite group.

Author(s):  
Sumanta Das ◽  
M. K. Sen ◽  
S. K. Maity

The aim of this paper is the characterization of algebraic properties of Leavitt path algebra of the directed power graph [Formula: see text] and also of the directed punctured power graph [Formula: see text] of a finite group [Formula: see text]. We show that Leavitt path algebra of the power graph [Formula: see text] of finite group [Formula: see text] over a field [Formula: see text] is simple if and only if [Formula: see text] is a direct sum of finitely many cyclic groups of order 2. Finally, we prove that the Leavitt path algebra [Formula: see text] is a prime ring if and only if [Formula: see text] is either cyclic [Formula: see text]-group or generalized quaternion [Formula: see text]-group.


2002 ◽  
Vol 34 (1) ◽  
pp. 46-54 ◽  
Author(s):  
RADHA KESSAR ◽  
MARKUS LINCKELMANN

Any 2-block of a finite group G with a quaternion defect group Q8 is Morita equivalent to the corresponding block of the centraliser H of the unique involution of Q8 in G; this answers positively an earlier question raised by M. Broué.


1988 ◽  
Vol 108 (1-2) ◽  
pp. 117-132
Author(s):  
Shigeo Koshitani

SynopsisLet J(FG) be the Jacobson radical of the group algebra FG of a finite groupG with a Sylow 3-subgroup which is extra-special of order 27 of exponent 3 over a field F of characteristic 3, and let t(G) be the least positive integer t with J(FG)t = 0. In this paper, we prove that t(G) = 9 if G has a normal subgroup H such that (|G:H|, 3) = 1 and if H is either 3-solvable, SL(3,3) or the Tits simple group 2F4(2)'.


2016 ◽  
Vol 15 (05) ◽  
pp. 1650092
Author(s):  
Andreas Bächle ◽  
Mauricio Caicedo ◽  
Inneke Van Gelder

When considering the unit group of [Formula: see text] ([Formula: see text] the ring of integers of an abelian number field [Formula: see text] and a finite group [Formula: see text]) certain components in the Wedderburn decomposition of [Formula: see text] cause problems for known generic constructions of units; these components are called exceptional. Exceptional components are divided into two types: type 1 is division rings, type 2 is [Formula: see text]-matrix rings. For exceptional components of type 1 we provide infinite classes of division rings by describing the seven cases of minimal groups (with respect to quotients) having those division rings in their Wedderburn decomposition over [Formula: see text]. We also classify the exceptional components of type 2 appearing in group algebras of a finite group over number fields [Formula: see text] by describing all 58 finite groups [Formula: see text] having a faithful exceptional Wedderburn component of this type in [Formula: see text].


2010 ◽  
Vol 09 (02) ◽  
pp. 305-314 ◽  
Author(s):  
HARISH CHANDRA ◽  
MEENA SAHAI

Let K be a field of characteristic p ≠ 2,3 and let G be a finite group. Necessary and sufficient conditions for δ3(U(KG)) = 1, where U(KG) is the unit group of the group algebra KG, are obtained.


2012 ◽  
Vol 12 (01) ◽  
pp. 1250130
Author(s):  
GEOFFREY JANSSENS

We give a description of the primitive central idempotents of the rational group algebra ℚG of a finite group G. Such a description is already investigated by Jespers, Olteanu and del Río, but some unknown scalars are involved. Our description also gives answers to their questions.


2015 ◽  
Vol 16 (2) ◽  
pp. 351-419 ◽  
Author(s):  
Anne-Marie Aubert ◽  
Paul Baum ◽  
Roger Plymen ◽  
Maarten Solleveld

Let$F$be a non-Archimedean local field, and let$G^{\sharp }$be the group of$F$-rational points of an inner form of$\text{SL}_{n}$. We study Hecke algebras for all Bernstein components of$G^{\sharp }$, via restriction from an inner form$G$of$\text{GL}_{n}(F)$.For any packet of L-indistinguishable Bernstein components, we exhibit an explicit algebra whose module category is equivalent to the associated category of complex smooth$G^{\sharp }$-representations. This algebra comes from an idempotent in the full Hecke algebra of$G^{\sharp }$, and the idempotent is derived from a type for$G$. We show that the Hecke algebras for Bernstein components of$G^{\sharp }$are similar to affine Hecke algebras of type$A$, yet in many cases are not Morita equivalent to any crossed product of an affine Hecke algebra with a finite group.


2017 ◽  
Vol 96 (2) ◽  
pp. 212-222
Author(s):  
LISA ORLOFF CLARK ◽  
ASTRID AN HUEF ◽  
PAREORANGA LUITEN-APIRANA

We show that every subset of vertices of a directed graph$E$gives a Morita equivalence between a subalgebra and an ideal of the associated Leavitt path algebra. We use this observation to prove an algebraic version of a theorem of Crisp and Gow: certain subgraphs of$E$can be contracted to a new graph$G$such that the Leavitt path algebras of$E$and$G$are Morita equivalent. We provide examples to illustrate how desingularising a graph, and in- or out-delaying of a graph, all fit into this setting.


2019 ◽  
Vol 18 (05) ◽  
pp. 1950086 ◽  
Author(s):  
Müge Kanuni̇ ◽  
Murad Özaydin

We give the necessary and sufficient condition for a separated Cohn–Leavitt path algebra of a finite digraph to have Invariant Basis Number (IBN). As a consequence, separated Cohn path algebras have IBN. We determine the non-stable K-theory of a corner ring in terms of the non-stable K-theory of the ambient ring. We give a necessary condition for a corner algebra of a separated Cohn–Leavitt path algebra of a finite graph to have IBN. We provide Morita equivalent rings which are non-IBN, but are of different types.


Sign in / Sign up

Export Citation Format

Share Document