scholarly journals Presentations for Subrings and Subalgebras of Finite CO-Rank

2019 ◽  
Vol 71 (1) ◽  
pp. 53-71
Author(s):  
Peter Mayr ◽  
Nik Ruškuc

Abstract Let $K$ be a commutative Noetherian ring with identity, let $A$ be a $K$-algebra and let $B$ be a subalgebra of $A$ such that $A/B$ is finitely generated as a $K$-module. The main result of the paper is that $A$ is finitely presented (resp. finitely generated) if and only if $B$ is finitely presented (resp. finitely generated). As corollaries, we obtain: a subring of finite index in a finitely presented ring is finitely presented; a subalgebra of finite co-dimension in a finitely presented algebra over a field is finitely presented (already shown by Voden in 2009). We also discuss the role of the Noetherian assumption on $K$ and show that for finite generation it can be replaced by a weaker condition that the module $A/B$ be finitely presented. Finally, we demonstrate that the results do not readily extend to non-associative algebras, by exhibiting an ideal of co-dimension $1$ of the free Lie algebra of rank 2 which is not finitely generated as a Lie algebra.

Author(s):  
Adel Alahmadi ◽  
Fawziah Alharthi

Let [Formula: see text] be a finitely generated associative algebra over a field [Formula: see text] of characteristic [Formula: see text] and let [Formula: see text] be its associated Lie algebra. In this paper, we investigate relations between the growth functions of [Formula: see text] and the Lie algebra [Formula: see text]. We prove that if A is generated by a finite collection of nilpotent elements, then the growth functions are asymptotically equivalent.


2018 ◽  
Vol 55 (3) ◽  
pp. 345-352
Author(s):  
Tran Nguyen An

Let R be a commutative Noetherian ring, M a finitely generated R-module, I an ideal of R and N a submodule of M such that IM ⫅ N. In this paper, the primary decomposition and irreducible decomposition of ideal I × N in the idealization of module R ⋉ M are given. From theses we get the formula for associated primes of R ⋉ M and the index of irreducibility of 0R ⋉ M.


1991 ◽  
Vol 34 (1) ◽  
pp. 155-160 ◽  
Author(s):  
H. Ansari Toroghy ◽  
R. Y. Sharp

LetEbe an injective module over the commutative Noetherian ringA, and letabe an ideal ofA. TheA-module (0:Eα) has a secondary representation, and the finite set AttA(0:Eα) of its attached prime ideals can be formed. One of the main results of this note is that the sequence of sets (AttA(0:Eαn))n∈Nis ultimately constant. This result is analogous to a theorem of M. Brodmann that, ifMis a finitely generatedA-module, then the sequence of sets (AssA(M/αnM))n∈Nis ultimately constant.


2015 ◽  
Vol 15 (01) ◽  
pp. 1650019 ◽  
Author(s):  
Tsutomu Nakamura

Let R be a commutative Noetherian ring, 𝔞 an ideal of R and M, N two finitely generated R-modules. Let t be a positive integer or ∞. We denote by Ωt the set of ideals 𝔠 such that [Formula: see text] for all i < t. First, we show that there exists the ideal 𝔟t which is the largest in Ωt and [Formula: see text]. Next, we prove that if 𝔡 is an ideal such that 𝔞 ⊆ 𝔡 ⊆ 𝔟t, then [Formula: see text] for all i < t.


2014 ◽  
Vol 21 (03) ◽  
pp. 517-520 ◽  
Author(s):  
Hero Saremi ◽  
Amir Mafi

Let R be a commutative Noetherian ring, 𝔞 an ideal of R, and M a non-zero finitely generated R-module. Let t be a non-negative integer. In this paper, it is shown that [Formula: see text] for all i < t if and only if there exists an ideal 𝔟 of R such that dim R/𝔟 ≤ 1 and [Formula: see text] for all i < t. Moreover, we prove that [Formula: see text] for all i.


2019 ◽  
Vol 18 (12) ◽  
pp. 1950236
Author(s):  
Takeshi Yoshizawa

Faltings presented the local-global principle for the finiteness dimension of local cohomology modules. This paper deals with the local-global principle for an extension subcategory over a commutative Noetherian ring. We prove that finitely generated modules satisfy the local-global principles for certain extension subcategories. Additionally, we provide a generalization of Faltings’ local-global principle, which also includes the local-global principles for the Artinianness and Minimaxness of local cohomology modules.


2008 ◽  
Vol 15 (02) ◽  
pp. 303-308 ◽  
Author(s):  
Jafar Amjadi ◽  
Reza Naghipour

The study of the cohomological dimension of algebraic varieties has produced some interesting results and problems in local algebra. Let 𝔞 be an ideal of a commutative Noetherian ring R. For finitely generated R-modules M and N, the concept of cohomological dimension cd 𝔞(M, N) of M and N with respect to 𝔞 is introduced. If 0 → N' → N → N'' → 0 is an exact sequence of finitely generated R-modules, then it is shown that cd 𝔞(M, N) = max { cd 𝔞(M, N'), cd 𝔞(M, N'')} whenever proj dim M < ∞. Also, if L is a finitely generated R-module with Supp (N/Γ𝔞(N)) ⊆ Supp (L/Γ𝔞(L)), then it is proved that cd 𝔞(M, N) ≤ max { cd 𝔞(M,L), proj dim M}. Finally, as a consequence, a result of Brodmann is improved.


2003 ◽  
Vol 13 (03) ◽  
pp. 287-302 ◽  
Author(s):  
André Nies

For various proper inclusions of classes of groups [Formula: see text], we obtain a group [Formula: see text] and a first-order sentence φ such that H⊨φ but no G∈ C satisfies φ. The classes we consider include the finite, finitely presented, finitely generated with and without solvable word problem, and all countable groups. For one separation, we give an example of a f.g. group, namely ℤp ≀ ℤ for some prime p, which is the only f.g. group satisfying an appropriate first-order sentence. A further example of such a group, the free step-2 nilpotent group of rank 2, is used to show that true arithmetic Th(ℕ,+,×) can be interpreted in the theory of the class of finitely presented groups and other classes of f.g. groups.


2019 ◽  
Vol 18 (01) ◽  
pp. 1950015 ◽  
Author(s):  
K. Divaani-Aazar ◽  
H. Faridian ◽  
M. Tousi

Let [Formula: see text] be a commutative noetherian ring, and [Formula: see text] a stable under specialization subset of [Formula: see text]. We introduce a notion of [Formula: see text]-cofiniteness and study its main properties. In the case [Formula: see text], or [Formula: see text], or [Formula: see text] is semilocal with [Formula: see text], we show that the category of [Formula: see text]-cofinite [Formula: see text]-modules is abelian. Also, in each of these cases, we prove that the local cohomology module [Formula: see text] is [Formula: see text]-cofinite for every homologically left-bounded [Formula: see text]-complex [Formula: see text] whose homology modules are finitely generated and every [Formula: see text].


2018 ◽  
Vol 17 (02) ◽  
pp. 1850020 ◽  
Author(s):  
Moharram Aghapournahr

Let [Formula: see text] be a commutative Noetherian ring, [Formula: see text] and [Formula: see text] be two ideals of [Formula: see text] and [Formula: see text] be an [Formula: see text]-module (not necessary [Formula: see text]-torsion). In this paper among other things, it is shown that if dim [Formula: see text], then the [Formula: see text]-module [Formula: see text] is finitely generated, for all [Formula: see text], if and only if the [Formula: see text]-module [Formula: see text] is finitely generated, for [Formula: see text]. As a consequence, we prove that if [Formula: see text] is finitely generated and [Formula: see text] such that the [Formula: see text]-module [Formula: see text] is [Formula: see text] (or weakly Laskerian) for all [Formula: see text], then [Formula: see text] is [Formula: see text]-cofinite for all [Formula: see text] and for any [Formula: see text] (or minimax) submodule [Formula: see text] of [Formula: see text], the [Formula: see text]-modules [Formula: see text] and [Formula: see text] are finitely generated. Also it is shown that if dim [Formula: see text] (e.g. dim [Formula: see text]) for all [Formula: see text], then the local cohomology module [Formula: see text] is [Formula: see text]-cofinite for all [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document