scholarly journals Asymptotic behaviour of ideals relative to injective modules over commutative Noetherian rings

1991 ◽  
Vol 34 (1) ◽  
pp. 155-160 ◽  
Author(s):  
H. Ansari Toroghy ◽  
R. Y. Sharp

LetEbe an injective module over the commutative Noetherian ringA, and letabe an ideal ofA. TheA-module (0:Eα) has a secondary representation, and the finite set AttA(0:Eα) of its attached prime ideals can be formed. One of the main results of this note is that the sequence of sets (AttA(0:Eαn))n∈Nis ultimately constant. This result is analogous to a theorem of M. Brodmann that, ifMis a finitely generatedA-module, then the sequence of sets (AssA(M/αnM))n∈Nis ultimately constant.

1992 ◽  
Vol 35 (3) ◽  
pp. 511-518
Author(s):  
H. Ansari Toroghy ◽  
R. Y. Sharp

Let E be an injective module over a commutative Noetherian ring A (with non-zero identity), and let a be an ideal of A. The submodule (0:Eα) of E has a secondary representation, and so we can form the finite set AttA(0:Eα) of its attached prime ideals. In [1, 3.1], we showed that the sequence of sets is ultimately constant; in [2], we introduced the integral closure a*(E) of α relative to E, and showed that is increasing and ultimately constant. In this paper, we prove that, if a contains an element r such that rE = E, then is ultimately constant, and we obtain information about its ultimate constant value.


1988 ◽  
Vol 53 (1) ◽  
pp. 284-293 ◽  
Author(s):  
T. G. Kucera

This is the second of two papers based on Chapter V of the author's Ph.D. thesis [K1]. For acknowledgements please refer to [K3]. In this paper I apply some of the ideas and techniques introduced in [K3] to the study of a very specific example. I obtain an upper bound for the positive Deissler rank of an injective module over a commutative Noetherian ring in terms of Krull dimension. The problem of finding lower bounds is vastly more difficult and is not addressed here, although I make a few comments and a conjecture at the end.For notation, terminology and definitions, I refer the reader to [K3]. I also use material on ideals and injective modules from [N] and [Ma]. Deissler's rank was introduced in [D].For the most part, in this paper all modules are unitary left modules over a commutative Noetherian ring Λ but in §1 I begin with a few useful results on totally transcendental modules and the relation between Deissler's rank rk and rk+.Recall that if P is a prime ideal of Λ, then an ideal I of Λ is P-primary if I ⊂ P, λ ∈ P implies that λn ∈ I for some n and if λµ ∈ I, λ ∉ P, then µ ∈ I. The intersection of finitely many P-primary ideals is again P-primary, and any P-primary ideal can be written as the intersection of finitely many irreducible P-primary ideals since Λ is Noetherian. Every irreducible ideal is P-primary for some prime ideal P. In addition, it will be important to recall that if P and Q are prime ideals, I is P-primary, J is Q-primary, and J ⊃ I, then Q ⊃ P. (All of these results can be found in [N].)


1988 ◽  
Vol 30 (3) ◽  
pp. 293-300 ◽  
Author(s):  
A.-J. Taherizadeh

In his paper [1], M. Brodmann showed that if M is a1 finitely generated module over the commutative Noetherian ring R (with identity) and a is an ideal of R then the sequence of sets {Ass(M/anM)}n∈ℕ and {Ass(an−1M/anM)}n∈ℕ (where ℕ denotes the set of positive integers) are eventually constant. Since then, the theory of asymptotic prime divisors has been studied extensively: in [5], Chapters 1 and 2], for example, various results concerning the eventual stable values of Ass(R/an;) and Ass(an−1/an), denoted by A*(a) and B*(a) respectively, are discussed. It is worth mentioning that the above mentioned results of Brodmann still hold if one assumes only that A is a commutative ring (with identity) and M is a Noetherian A-module, and AssA(M), in this situation, is regarded as the set of prime ideals belonging to the zero submodule of M for primary decomposition.


2018 ◽  
Vol 17 (03) ◽  
pp. 1850039
Author(s):  
Lars Winther Christensen ◽  
Kiriko Kato

A commutative noetherian ring with a dualizing complex is Gorenstein if and only if every acyclic complex of injective modules is totally acyclic. We extend this characterization, which is due to Iyengar and Krause, to arbitrary commutative noetherian rings, i.e. we remove the assumption about a dualizing complex. In this context Gorenstein, of course, means locally Gorenstein at every prime.


2005 ◽  
Vol 48 (2) ◽  
pp. 275-282
Author(s):  
Patrick F. Smith

AbstractLet R be a commutative Noetherian integral domain with field of fractions Q. Generalizing a forty-year-old theorem of E. Matlis, we prove that the R-module Q/R (or Q) has Krull dimension if and only if R is semilocal and one-dimensional. Moreover, if X is an injective module over a commutative Noetherian ring such that X has Krull dimension, then the Krull dimension of X is at most 1.


2018 ◽  
Vol 55 (3) ◽  
pp. 345-352
Author(s):  
Tran Nguyen An

Let R be a commutative Noetherian ring, M a finitely generated R-module, I an ideal of R and N a submodule of M such that IM ⫅ N. In this paper, the primary decomposition and irreducible decomposition of ideal I × N in the idealization of module R ⋉ M are given. From theses we get the formula for associated primes of R ⋉ M and the index of irreducibility of 0R ⋉ M.


2020 ◽  
Vol 72 (7) ◽  
pp. 960-970
Author(s):  
R. Tribak

UDC 512.5 Let R be a ring and let Ω R be the set of maximal right ideals of R . An R -module M is called an sd-Rickart module if for every nonzero endomorphism f of M , ℑ f is a fully invariant direct summand of M . We obtain a characterization for an arbitrary direct sum of sd-Rickart modules to be sd-Rickart. We also obtain a decomposition of an sd-Rickart R -module M , provided R is a commutative noetherian ring and A s s ( M ) ∩ Ω R is a finite set. In addition, we introduce and study ageneralization of sd-Rickart modules.


2019 ◽  
Vol 19 (03) ◽  
pp. 2050050 ◽  
Author(s):  
Yanjiong Yang ◽  
Xiaoguang Yan

In this paper, we study the conditions under which a module is a strict Mittag–Leffler module over the class [Formula: see text] of Gorenstein injective modules. To this aim, we introduce the notion of [Formula: see text]-projective modules and prove that over noetherian rings, if a module can be expressed as the direct limit of finitely presented [Formula: see text]-projective modules, then it is a strict Mittag–Leffler module over [Formula: see text]. As applications, we prove that if [Formula: see text] is a two-sided noetherian ring, then [Formula: see text] is a covering class closed under pure submodules if and only if every injective module is strict Mittag–Leffler over [Formula: see text].


2019 ◽  
Vol 71 (1) ◽  
pp. 53-71
Author(s):  
Peter Mayr ◽  
Nik Ruškuc

Abstract Let $K$ be a commutative Noetherian ring with identity, let $A$ be a $K$-algebra and let $B$ be a subalgebra of $A$ such that $A/B$ is finitely generated as a $K$-module. The main result of the paper is that $A$ is finitely presented (resp. finitely generated) if and only if $B$ is finitely presented (resp. finitely generated). As corollaries, we obtain: a subring of finite index in a finitely presented ring is finitely presented; a subalgebra of finite co-dimension in a finitely presented algebra over a field is finitely presented (already shown by Voden in 2009). We also discuss the role of the Noetherian assumption on $K$ and show that for finite generation it can be replaced by a weaker condition that the module $A/B$ be finitely presented. Finally, we demonstrate that the results do not readily extend to non-associative algebras, by exhibiting an ideal of co-dimension $1$ of the free Lie algebra of rank 2 which is not finitely generated as a Lie algebra.


2015 ◽  
Vol 15 (01) ◽  
pp. 1650019 ◽  
Author(s):  
Tsutomu Nakamura

Let R be a commutative Noetherian ring, 𝔞 an ideal of R and M, N two finitely generated R-modules. Let t be a positive integer or ∞. We denote by Ωt the set of ideals 𝔠 such that [Formula: see text] for all i < t. First, we show that there exists the ideal 𝔟t which is the largest in Ωt and [Formula: see text]. Next, we prove that if 𝔡 is an ideal such that 𝔞 ⊆ 𝔡 ⊆ 𝔟t, then [Formula: see text] for all i < t.


Sign in / Sign up

Export Citation Format

Share Document