scholarly journals F81. STRIATAL DOPAMINE AND DECREASED PREDICTION ERROR CODING IN UNMEDICATED SCHIZOPHRENIA PATIENTS

2019 ◽  
Vol 45 (Supplement_2) ◽  
pp. S284-S285
Author(s):  
Teresa Katthagen ◽  
Jakob Kaminski ◽  
Andreas Heinz ◽  
Ralph Buchert ◽  
Florian Schlagenhauf
2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S11-S11
Author(s):  
Teresa Katthagen ◽  
Jakob Kaminski ◽  
Andreas Heinz ◽  
Ralph Buchert ◽  
Florian Schlagenhauf

Abstract Background Increased striatal dopamine synthesis capacity (DSC) has consistently been reported in patients with schizophrenia (Sz). However, the functional mechanism translating this into behavior and symptoms remains unclear. It has been proposed that heightened striatal dopamine may blunt dopaminergic reward prediction error (RPE) signaling during reinforcement learning. Methods In this study, we investigated striatal DSC and RPEs and their association in unmedicated Sz and healthy controls. 23 healthy controls (HC) and 20 unmedicated Sz took part in an FDOPA-PET scan measuring DSC and underwent fMRI scanning, where they performed a reversal learning paradigm. We compared groups regarding DSC und neural RPE signals and probed the respective correlation (23 HC and 16 Sz for both measures). Results There was no significant difference between HC and Sz in DSC. Taking into account comorbid alcohol abuse revealed that only patients without such abuse showed elevated DSC in the associative and sensorimotor striatum, while those with abuse did not differ from HC. Patients performed worse during learning, accompanied by a reduced RPE signal in the ventral striatum. In HC, the DSC in the limbic striatum correlated with higher RPE signaling, while there was no significant association in patients. DSC in the associative striatum correlated with higher positive symptoms, and blunted RPE signaling was associated with negative symptoms. Discussion Our results suggest that dopamine modulation of RPE is impaired in schizophrenia. Furthermore, we observed a dissociation with elevated DSC in the associative and sensorimotor striatum contributing to positive symptoms and blunted RPE in the ventral striatum to negative symptoms.


2010 ◽  
Vol 30 (34) ◽  
pp. 11447-11457 ◽  
Author(s):  
K. Oyama ◽  
I. Hernadi ◽  
T. Iijima ◽  
K.-I. Tsutsui

Cognition ◽  
2021 ◽  
Vol 207 ◽  
pp. 104519
Author(s):  
Nayantara Ramamoorthy ◽  
Maximilian Parker ◽  
Kate Plaisted-Grant ◽  
Alex Muhl-Richardson ◽  
Greg Davis

2016 ◽  
Vol 18 (1) ◽  
pp. 23-32 ◽  

Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards—an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.


2020 ◽  
Vol 46 (6) ◽  
pp. 1535-1546
Author(s):  
Teresa Katthagen ◽  
Jakob Kaminski ◽  
Andreas Heinz ◽  
Ralph Buchert ◽  
Florian Schlagenhauf

Abstract Increased striatal dopamine synthesis capacity has consistently been reported in patients with schizophrenia. However, the mechanism translating this into behavior and symptoms remains unclear. It has been proposed that heightened striatal dopamine may blunt dopaminergic reward prediction error signaling during reinforcement learning. In this study, we investigated striatal dopamine synthesis capacity, reward prediction errors, and their association in unmedicated schizophrenia patients (n = 19) and healthy controls (n = 23). They took part in FDOPA-PET and underwent functional magnetic resonance imaging (fMRI) scanning, where they performed a reversal-learning paradigm. The groups were compared regarding dopamine synthesis capacity (Kicer), fMRI neural prediction error signals, and the correlation of both. Patients did not differ from controls with respect to striatal Kicer. Taking into account, comorbid alcohol abuse revealed that patients without such abuse showed elevated Kicer in the associative striatum, while those with abuse did not differ from controls. Comparing all patients to controls, patients performed worse during reversal learning and displayed reduced prediction error signaling in the ventral striatum. In controls, Kicer in the limbic striatum correlated with higher reward prediction error signaling, while there was no significant association in patients. Kicer in the associative striatum correlated with higher positive symptoms and blunted reward prediction error signaling was associated with negative symptoms. Our results suggest a dissociation between striatal subregions and symptom domains, with elevated dopamine synthesis capacity in the associative striatum contributing to positive symptoms while blunted prediction error signaling in the ventral striatum related to negative symptoms.


2009 ◽  
Vol 33 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Karmen K. Yoder ◽  
Evan D. Morris ◽  
Cristian C. Constantinescu ◽  
Tee-Ean Cheng ◽  
Marc D. Normandin ◽  
...  

2019 ◽  
Author(s):  
Lydia Hellrung ◽  
Matthias Kirschner ◽  
James Sulzer ◽  
Ronald Sladky ◽  
Frank Scharnowski ◽  
...  

AbstractThe dopaminergic midbrain is associated with brain functions, such as reinforcement learning, motivation and decision-making that are often disturbed in neuropsychiatric disease. Previous research has shown that activity in the dopaminergic midbrain can be endogenously modulated via neurofeedback, suggesting potential for non-pharmacological interventions. However, the robustness of endogenous modulation, a requirement for clinical translation, is unclear. Here, we examined how self-modulation capability relates to regulation transfer. Moreover, to elucidate potential mechanisms underlying successful self-regulation, we studied individual prediction error coding, and, during an independent monetary incentive delay (MID) task, individual reward sensitivity. Fifty-nine participants underwent neurofeedback training either in a veridical or inverted feedback group. Successful self-regulation was associated with post-training activity within the cognitive control network and accompanied by decreasing prefrontal prediction error signals and increased prefrontal reward sensitivity in the MID task. The correlative link of dopaminergic self-regulation with individual differences in prefrontal prediction error and reward sensitivity suggests that reinforcement learning contributes to successful self-regulation. Our findings therefore provide new insights in the control of dopaminergic midbrain activity and pave the way to improve neurofeedback training in neuropsychiatric patients.


2014 ◽  
Vol 112 (5) ◽  
pp. 1021-1024 ◽  
Author(s):  
Joachim Morrens

Dopamine midbrain neurons are well known for prediction error coding in a reward context. A recent report by Christopher Fiorillo ( Science 341: 546–549, 2013), however, suggests that these neurons behave markedly different when subjects get confronted with aversive, rather than appetitive, stimuli. Despite his findings being in line with indications of appetitive and aversive stimuli being processed by distinct neurotransmitter systems, they should still be interpreted with some caution due to a potential issue of recording location.


2018 ◽  
Vol 44 (suppl_1) ◽  
pp. S172-S173
Author(s):  
Teresa Katthagen ◽  
Jakob Kaminski ◽  
Andreas Heinz ◽  
Florian Schlagenhauf

Sign in / Sign up

Export Citation Format

Share Document