neurofeedback training
Recently Published Documents


TOTAL DOCUMENTS

535
(FIVE YEARS 187)

H-INDEX

37
(FIVE YEARS 4)

Author(s):  
Eszter Bíró ◽  
László Balogh

Increasing athlete performance is an eternal challenge in the world of sports. The success of the training work performed can be checked by performance diagnostics. Proper brain processing is essential for skill learning and the implementation of effective motor performance. It was important for brain mapping technology to improve the capabilities of imaging devices in order to measure cognitive-motor performance in the field. The primary purpose of this review was to summarize the frequency of applications of EEG and its associated neurofeedback in sport. Examine the differences and characteristics of protocols. Assess whether there is this uniform, standardized protocol for each sport and how often it is used among both elite and amateur athletes. Electroencephalography was initially used most in sports in which the stable setting was followed by only minimal movement. These include sport shooting, archery and golf and baseball. Later, it was possible to analyze more complex movements with EEG, such as cycling. One of the most commonly used techniques is neurofeedback training, but despite some research on the topic, the arena of neurotechnology in sports psychology still exists in its rudimentary form and is constrained by a plethora of technological problems.


Author(s):  
Kathrin C. J. Eschmann ◽  
Lisa Riedel ◽  
Axel Mecklinger

Abstract Flow is defined as a cognitive state that is associated with a feeling of automatic and effortless control, enabling peak performance in highly challenging situations. In sports, flow can be enhanced by mindfulness training, which has been associated with frontal theta activity (4-8 Hz). Moreover, frontal-midline theta oscillations were shown to subserve control processes in a large variety of cognitive tasks. Based on previous theta neurofeedback training studies, which revealed that one training session is sufficient to enhance motor performance, the present study investigated whether one 30-minute session of frontal-midline theta neurofeedback training (1) enhances flow experience additionally to motor performance in a finger tapping task, and (2) transfers to cognitive control processes in an n-back task. Participants, who were able to successfully upregulate their theta activity during neurofeedback training (responders), showed better motor performance and flow experience after training than participants, who did not enhance their theta activity (non-responders). Across all participants, increase of theta activity during training was associated with motor performance enhancement from pretest to posttest irrespective of pre-training performance. Interestingly, theta training gains were also linked to the increase of flow experience, even when corresponding increases in motor performance were controlled for. Results for the n-back task were not significant. Even though these findings are mainly correlational in nature and additional flow-promoting influences need to be investigated, the present findings suggest that frontal-midline theta neurofeedback training is a promising tool to support flow experience with additional relevance for performance enhancement.


Author(s):  
Sonja G. Werneck-Rohrer ◽  
Theresa M. Lindorfer ◽  
Carolin Waleew ◽  
Julia Philipp ◽  
Karin Prillinger ◽  
...  

Summary Background This study aims to compare the effects of neurofeedback training on male and female adolescents with autism spectrum disorder (ASD). Furthermore, it examines sex differences regarding improvements in co-occurring psychopathological symptoms, cognitive flexibility and emotion recognition abilities. The study might provide first hints whether there is an influence of sex on treatment outcomes. Methods Six female and six male adolescents with ASD were matched according to age, IQ and symptom severity. All participants received 24 sessions of electroencephalography-based neurofeedback training. Before and after the intervention, psychological data for measuring co-occurring psychopathological symptoms as well as behavioral data for measuring cognitive flexibility and emotion recognition abilities were recorded. Results Caregivers rated statistically significant higher psychopathological problems in female than in male adolescents with ASD at baseline. Apart from that, no statistically significant sex-related differences were revealed in this sample; however, male adolescents tended to report greater improvements of externalizing, internalizing and total symptoms, whereas females experienced smaller improvements of externalizing and total problems, but no improvements of internalizing problems. Regarding caregivers’ assessments, more improvement of total problems was reported for females. For males, only improvements of internalizing and total problems were described. Conclusion This study reveals preliminary results that sex-related differences might play a role when evaluating treatment outcomes after neurofeedback training regarding comorbid psychopathological symptoms. Adolescents’ self-report and parental assessments, especially concerning psychopathological symptoms, should be combined and considered in future studies to help prevent sex bias in adolescents with ASD.


Author(s):  
Christophe Domingos ◽  
Higino da Silva Caldeira ◽  
Marco Miranda ◽  
Fernando Melício ◽  
Agostinho C. Rosa ◽  
...  

Considering that athletes constantly practice and compete in noisy environments, the aim was to investigate if performing neurofeedback training in these conditions would yield better results in performance than in silent ones. A total of forty-five student athletes aged from 18 to 35 years old and divided equally into three groups participated in the experiment (mean ± SD for age: 22.02 ± 3.05 years). The total neurofeedback session time for each subject was 300 min and were performed twice a week. The environment in which the neurofeedback sessions were conducted did not seem to have a significant impact on the training’s success in terms of alpha relative amplitude changes (0.04 ± 0.08 for silent room versus 0.07 ± 0.28 for noisy room, p = 0.740). However, the group exposed to intermittent noise appears to have favourable results in all performance assessments (p = 0.005 for working memory and p = 0.003 for reaction time). The results of the study suggested that performing neurofeedback training in an environment with intermittent noise can be interesting to athletes. Nevertheless, it is imperative to perform a replicated crossover design.


Author(s):  
Mohammad Keilani ◽  
Margarete Steiner ◽  
Richard Crevenna

Summary Purpose The aim of this systematic review was to focus on the effect of biofeedback on smoking cessation. Material and methods This review was conducted following the PRISMA guidelines. Peer-reviewed original articles including biofeedback and/or neurofeedback training as an intervention for smoking cessation were included. The PubMed, MEDLINE, Web of Science, Scopus, and Cochrane Library databases were screened for trials published up to July 2021. The effects on smoking rates and smoking behavior, and biofeedback/neurofeedback training measures are summarized here. Results In total, three articles fulfilled the inclusion criteria. The total Downs and Black checklist scores ranged from 11 to 23 points, showing that the articles were of poor to good methodological quality. The included studies were heterogeneous, both in terms of treatment protocols and in terms of outcome parameters. Pooling of data for a meta-analysis was not possible. Therefore, we were limited to describing the included studies. The included biofeedback study demonstrated that skin temperature training might improve the patients’ ability to raise their skin temperature aiming at stress alleviation. All three studies reported positive effects of biofeedback/neurofeedback in supporting smokers to quit. Furthermore, individualized electroencephalography neurofeedback training showed promising results in one study in modulating craving-related responses. Conclusion The results of the present review suggest that biofeedback/neurofeedback training might facilitate smoking cessation by changing behavioral outcomes. Although the investigated studies contained heterogeneous methodologies, they showed interesting approaches that could be further investigated and elaborated. To improve the scientific evidence, prospective randomized controlled trials are needed to investigate biofeedback/neurofeedback in clinical settings for smoking cessation.


Author(s):  
Shuang Liu ◽  
Xinyu Hao ◽  
Xiaoya Liu ◽  
Yuchen He ◽  
Ludan Zhang ◽  
...  

Author(s):  
Guzmán Alba ◽  
Juan L. Terrasa ◽  
Jaime Vila ◽  
Pedro Montoya ◽  
Miguel A. Muñoz

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marina Krylova ◽  
Stavros Skouras ◽  
Adeel Razi ◽  
Andrew A. Nicholson ◽  
Alexander Karner ◽  
...  

AbstractNeurofeedback allows for the self-regulation of brain circuits implicated in specific maladaptive behaviors, leading to persistent changes in brain activity and connectivity. Positive-social emotion regulation neurofeedback enhances emotion regulation capabilities, which is critical for reducing the severity of various psychiatric disorders. Training dorsomedial prefrontal cortex (dmPFC) to exert a top-down influence on bilateral amygdala during positive-social emotion regulation progressively (linearly) modulates connectivity within the trained network and induces positive mood. However, the processes during rest that interleave the neurofeedback training remain poorly understood. We hypothesized that short resting periods at the end of training sessions of positive-social emotion regulation neurofeedback would show alterations within emotion regulation and neurofeedback learning networks. We used complementary model-based and data-driven approaches to assess how resting-state connectivity relates to neurofeedback changes at the end of training sessions. In the experimental group, we found lower progressive dmPFC self-inhibition and an increase of connectivity in networks engaged in emotion regulation, neurofeedback learning, visuospatial processing, and memory. Our findings highlight a large-scale synergy between neurofeedback and resting-state brain activity and connectivity changes within the target network and beyond. This work contributes to our understanding of concomitant learning mechanisms post training and facilitates development of efficient neurofeedback training.


Author(s):  
Yevhen Damanskyy ◽  
Alexander Olsen ◽  
Stig Hollup

AbstractThe present study evaluated whether subjects’ expectations and neurofeedback training performance predict neurofeedback efficacy in cognitive training by controlling both factors as statistical variables. Twenty-two psychology students underwent neurofeedback training, employing beta/theta protocol to enhance beta1 power (13–21 Hz) and suppress theta (4–7 Hz) power. Neurofeedback efficacy was evaluated by behavioral components measured on pre-tests and post-tests employing a visual continuous performance task. The results revealed a significant interaction term between change in reaction time from pre-test to post-test and expectancy effect, indicating that participants with high prognostic expectations showed better improvement in reaction time scores. The data did not reveal that actual neurofeedback performance influenced the post-test measurements of the visual continuous performance task. No significant differences were found for reaction time variability, omission, or commission errors. Possible factors contributing to the results are discussed, and directions for future research are suggested.


Author(s):  
Christophe Domingos ◽  
Carlos Marques da Silva ◽  
André Antunes ◽  
Pedro Prazeres ◽  
Inês Esteves ◽  
...  

Neurofeedback training is a technique which has seen a widespread use in clinical applications, but has only given its first steps in the sport environment. Therefore, there is still little information about the effects that this technique might have on parameters, which are relevant for athletes’ health and performance, such as heart rate variability, which has been linked to physiological recovery. In the sport domain, no studies have tried to understand the effects of neurofeedback training on heart rate variability, even though some studies have compared the effects of doing neurofeedback or heart rate biofeedback training on performance. The main goal of the present study was to understand if alpha-band neurofeedback training could lead to increases in heart rate variability. 30 male student-athletes, divided into two groups, (21.2 ± 2.62 year 2/week protocol and 22.6 ± 1.1 year 3/week protocol) participated in the study, of which three subjects were excluded. Both groups performed a pre-test, a trial session and 12 neurofeedback sessions, which consisted of 25 trials of 60 s of a neurofeedback task, with 5 s rest in-between trials. The total neurofeedback session time for each subject was 300 min in both groups. Throughout the experiment, electroencephalography and heart rate variability signals were recorded. Only the three sessions/week group revealed significant improvements in mean heart rate variability at the end of the 12 neurofeedback sessions (p = 0.05); however, significant interaction was not found when compared with both groups. It is possible to conclude that neurofeedback training of individual alpha band may induce changes in heart rate variability in physically active athletes.


Sign in / Sign up

Export Citation Format

Share Document