ventral striatum
Recently Published Documents


TOTAL DOCUMENTS

845
(FIVE YEARS 189)

H-INDEX

94
(FIVE YEARS 7)

2021 ◽  
Vol 15 ◽  
Author(s):  
Hye Ji J. Kim ◽  
Ayat Zagzoog ◽  
Anna Maria Smolyakova ◽  
Udoka C. Ezeaka ◽  
Michael J. Benko ◽  
...  

The endocannabinoid and orexin neuromodulatory systems serve key roles in many of the same biological functions such as sleep, appetite, pain processing, and emotional behaviors related to reward. The type 1 cannabinoid receptor (CB1R) and both subtypes of the orexin receptor, orexin receptor type 1 (OX1R) and orexin receptor type 2 (OX2R) are not only expressed in the same brain regions modulating these functions, but physically interact as heterodimers in recombinant and neuronal cell cultures. In the current study, male and female C57BL/6 mice were co-treated with the cannabinoid receptor agonist CP55,940 and either the OX2R antagonist TCS-OX2-29 or the dual orexin receptor antagonist (DORA) TCS-1102. Mice were then evaluated for catalepsy, body temperature, thermal anti-nociception, and locomotion, after which their brains were collected for receptor colocalization analysis. Combined treatment with the DORA TCS-1102 and CP55,940 potentiated catalepsy more than CP55,940 alone, but this effect was not observed for changes in body temperature, nociception, locomotion, or via selective OX2R antagonism. Co-treatment with CP55,940 and TCS-1102 also led to increased CB1R-OX1R colocalization in the ventral striatum. This was not seen following co-treatment with TCS-OX2-29, nor in CB1R-OX2R colocalization. The magnitude of effects following co-treatment with CP55,940 and either the DORA or OX2R-selective antagonist was greater in males than females. These data show that CB1R-OX1R colocalization in the ventral striatum underlies cataleptic additivity between CP55,940 and the DORA TCS-1102. Moreover, cannabinoid-orexin receptor interactions are sex-specific with regards to brain region and functionality. Physical or molecular interactions between these two systems may provide valuable insight into drug-drug interactions between cannabinoid and orexin drugs for the treatment of insomnia, pain, and other disorders.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hendrik Theis ◽  
Catharina Probst ◽  
Pierre-Olivier Fernagut ◽  
Thilo van Eimeren

AbstractImpulse-control disorders are commonly observed during dopamine-replacement therapy in Parkinson’s disease, but the majority of patients seems “immune” to this side effect. Epidemiological evidence suggests that a major risk factor may be a specific difference in the layout of the dopaminergic-reinforcement system, of which the ventral striatum is a central player. A series of imaging studies of the dopaminergic system point toward a presynaptic reduction of dopamine-reuptake transporter density and dopamine synthesis capacity. Here, we review current evidence for a vulnerability-stress model in which a relative reduction of dopaminergic projections to the ventral striatum and concomitant sensitization of postsynaptic neurons represent a predisposing (hypodopaminergic) vulnerability. Stress (hyperdopaminergic) is delivered when dopamine replacement therapy leads to a relative overdosing of the already-sensitized ventral striatum. These alterations are consistent with consecutive changes in reinforcement mechanisms, which stimulate learning from reward and impede learning from punishment, thereby fostering the development of impulse-control disorders. This vulnerability-stress model might also provide important insights into the development of addictions in the non-Parkinsonian population.


2021 ◽  
pp. 112-116
Author(s):  
Simon Lacey ◽  
K. Sathian

The “art infusion effect” suggests that people evaluate products more positively when they are associated with art images than non-art images. Using functional magnetic resonance imaging during viewing of art and non-art images matched for content, the authors investigated whether artistic status alone could activate the reward circuit. Relative to non-art images, art images indeed activated reward-related regions including the ventral striatum. This activity was uncorrelated with response times, ratings of familiarity, or aesthetic preference for art images, suggesting that these variables were unrelated to the art-selective activations. Effective connectivity analyses showed that the ventral striatum was driven by visual cortical regions when viewing art images but not non-art images and was not driven by regions that correlated with aesthetic preference for either art or non-art images. These findings suggest that visual art involves activation of reward circuitry based on artistic status alone and independently of its aesthetic value.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ayaka Misonou ◽  
Koji Jimura

Intertemporal choice involves the evaluation of future rewards and reflects behavioral impulsivity. After choosing a delayed reward in an intertemporal choice, a behavioral agent waits for, receives, and then consumes the reward. The current study focused on the consumption of the delayed reward and examined the neural mechanisms of behavioral impulsivity. In humans consuming delayed real liquid rewards in an intertemporal choice, the ventral striatum (VS) showed differential activity between anterior (aVS) and posterior (pVS) regions depending on the degree of behavioral impulsivity. Additionally, impulsive individuals showed activity in the anterior prefrontal cortex (aPFC). An analysis of task-related effective connectivity based on psychophysiological interaction (PPI) revealed that PPI was robust from the aPFC to pVS, but not in the opposite direction. On the other hand, strong bidirectional PPIs were observed between the aVS and pVS, but PPIs from the pVS to aVS were enhanced in impulsive individuals. These results suggest that behavioral impulsivity is reflected in aPFC-VS mechanisms during the consumption of delayed real liquid rewards.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cyril Atkinson-Clement ◽  
Astrid de Liege ◽  
Yanica Klein ◽  
Benoit Beranger ◽  
Romain Valabregue ◽  
...  

AbstractReward sensitivity has been suggested as one of the central pathophysiological mechanisms in Tourette disorder. However, the subjective valuation of a reward by introduction of delay has received little attention in Tourette disorder, even though it has been suggested as a trans-diagnostic feature of numerous neuropsychiatric disorders. We aimed to assess delay discounting in Tourette disorder and to identify its brain functional correlates. We evaluated delayed discounting and its brain functional correlates in a large group of 54 Tourette disorder patients and 31 healthy controls using a data-driven approach. We identified a subgroup of 29 patients with steeper reward discounting, characterised by a higher burden of impulse-control disorders and a higher level of general impulsivity compared to patients with normal behavioural performance or to controls. Reward discounting was underpinned by resting-state activity of a network comprising the orbito-frontal, cingulate, pre-supplementary motor area, temporal and insular cortices, as well as ventral striatum and hippocampus. Within this network, (i) lower connectivity of pre-supplementary motor area with ventral striatum predicted a higher impulsivity and a steeper reward discounting and (ii) a greater connectivity of pre-supplementary motor area with anterior insular cortex predicted steeper reward discounting and more severe tics. Overall, our results highlight the heterogeneity of the delayed reward processing in Tourette disorder, with steeper reward discounting being a marker of burden in impulsivity and impulse control disorders, and the pre-supplementary motor area being a hub region for the delay discounting, impulsivity and tic severity.


Author(s):  
Peter Manza ◽  
Ehsan Shokri-Kojori ◽  
Corinde E. Wiers ◽  
Danielle Kroll ◽  
Dana Feldman ◽  
...  

AbstractSex differences in the prevalence of dopamine-related neuropsychiatric diseases and in the sensitivity to dopamine-boosting drugs such as stimulants is well recognized. Here we assessed whether there are sex differences in the brain dopamine system in humans that could contribute to these effects. We analyzed data from two independent [11C]raclopride PET brain imaging studies that measured methylphenidate-induced dopamine increases in the striatum using different routes of administration (Cohort A = oral 60 mg; Cohort B = intravenous 0.5 mg/kg; total n = 95; 65 male, 30 female), in blinded placebo-controlled designs. Females when compared to males reported stronger feeling of “drug effects” and showed significantly greater dopamine release in the ventral striatum (where nucleus accumbens is located) to both oral and intravenous methylphenidate. In contrast, there were no significant differences in methylphenidate-induced increases in dorsal striatum for either oral or intravenous administration nor were there differences in levels of methylphenidate in plasma. The greater dopamine increases with methylphenidate in ventral but not dorsal striatum in females compared to males suggests an enhanced sensitivity specific to the dopamine reward system that might underlie sex differences in the vulnerability to substance use disorders and to attention-deficit/hyperactivity disorder (ADHD).


2021 ◽  
Author(s):  
Michael Pereira ◽  
Rafal Skiba ◽  
Yann Cojan ◽  
Patrik Vuilleumier ◽  
Indrit Begue

Numerous studies have shown that humans can successfully correct deviations to ongoing movements without being aware of them, suggesting limited conscious monitoring of visuomotor performance. Here, we ask whether such limited monitoring impairs the capacity to judiciously place confidence ratings to reflect decision accuracy (metacognitive sensitivity). To this end, we recorded functional magnetic resonance imaging data while thirty-one participants reported visuomotor cursor deviations and rated their confidence retrospectively. We show that participants use a summary statistic of the unfolding visual feedback (the maximum cursor error) to detect deviations but that this information alone is insufficient to explain detection performance. The same summary statistics is used by participants to optimally adjust their confidence ratings, even for unaware deviations. At the neural level, activity in the ventral striatum tracked high confidence, whereas a broad network including the anterior prefrontal cortex encoded cursor error but not confidence, shedding new light on a role of the anterior prefrontal cortex for action monitoring rather than confidence. Together, our results challenge the notion of limited action monitoring and uncover a new mechanism by which humans optimally monitor their movements as they unfold, even when unaware of ongoing deviations.


2021 ◽  
Vol 82 (6) ◽  
Author(s):  
Frederick L. Hitti ◽  
Mario A. Cristancho ◽  
Andrew I. Yang ◽  
John P. O’Reardon ◽  
Mahendra T. Bhati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document