Row Spacing and Plant Population Effects on Cotton Produced With or Without Irrigation

2010 ◽  
Vol 9 (1) ◽  
pp. 1-5
Author(s):  
William Molin
1989 ◽  
Vol 81 (6) ◽  
pp. 947-951 ◽  
Author(s):  
W. J. Ethredge ◽  
D. A. Ashley ◽  
J. M. Woodruff

2021 ◽  
Vol 37 ◽  
pp. e37042
Author(s):  
Marcelo De Almeida Silva ◽  
Ana Carolina De Santana Soares ◽  
Melina Rodrigues Alves Carnietto ◽  
Alexandrius De Moraes Barbosa

Studies addressing the interaction of different spatial arrangement in soybean are needed in order to achieve management that leads to higher grain yield associated with rational seed use. The objective of this work was to evaluate the yield components and productivity of an undetermined growth type soybean as a function of different row spacing and plant densities. The treatments consisted of three row spaces (0.25, 0.35 and 0.45 m) and three plant population densities (30, 40 and 50 plants/m²). There was no interaction of row spaces and plant population on soybean yield. Regarding the overall spacing average, the grain yield of the population of 30/m² plants was higher than the productivity of the populations of 40 and 50/m² plants. The largest populations reduce plant sizes due to greater competition between plants. In addition, smaller populations promote higher individual plant yields due to the increase components of the production. This characteristic is defined as the ability of the plant to change its morphology and yield components in order to adapt to the conditions imposed by the spatial arrangement.


Oecologia ◽  
2020 ◽  
Vol 194 (1-2) ◽  
pp. 237-250
Author(s):  
Rutger A. Wilschut ◽  
Kim J. H. Magnée ◽  
S. Geisen ◽  
W. H. van der Putten ◽  
O. Kostenko

Abstract Climate change causes species range expansions to higher latitudes and altitudes. It is expected that, due to differences in dispersal abilities between plants and soil biota, range-expanding plant species will become associated with a partly new belowground community in their expanded range. Theory on biological invasions predicts that outside their native range, range-expanding plant species may be released from specialist natural enemies, leading to the evolution of enhanced defence against generalist enemies. Here we tested the hypothesis that expanded range populations of the range-expanding plant species Centaurea stoebe accumulate fewer root-feeding nematodes than populations from the original range. Moreover, we examined whether Centaurea stoebe accumulates fewer root-feeding nematodes in expanded range soil than in original range soil. We grew plants from three expanded range and three original range populations of C. stoebe in soil from the original and from the new range. We compared nematode communities of C. stoebe with those of C. jacea, a congeneric species native to both ranges. Our results show that expanded range populations of C. stoebe did not accumulate fewer root-feeding nematodes than populations from the original range, but that C. stoebe, unlike C. jacea, accumulated fewest root-feeding nematodes in expanded range soil. Moreover, when we examined other nematode feeding groups, we found intra-specific plant population effects on all these groups. We conclude that range-expanding plant populations from the expanded range were not better defended against root-feeding nematodes than populations from the original range, but that C. stoebe might experience partial belowground enemy release.


1994 ◽  
Vol 39 (2-3) ◽  
pp. 163-170 ◽  
Author(s):  
Piara Singh ◽  
K.J. Boote ◽  
S.M. Virmani

1962 ◽  
Vol 2 (4) ◽  
pp. 54 ◽  
Author(s):  
LJ Phillips ◽  
MJT Norman

In 1957-58 and 1958-59, Virginia Bunch and Natal Common peanuts were sown on Tippers clay loam at Katherine, N.T., in a multifactorial experiment at two inter-row spacings (2 ft and 3 ft), four plant populations (10, 20, 40 and 80 thousand per acre) and two dates. In 1960-61, Natal Common only was sown at the same inter-row spacings, at two dates, and at populations of 10, 20, 30 and 40 thousand per acre. Over two seasons, the yield of Virginia Bunch kernels was not significantly influenced by variation in population, though the yield of hay was 42 per cent higher at 80,000 plants per acre than at 10,000 plants per acre. Kernel yields from 2 f t rows were 14 per cent higher than from 3 f t rows. In the first two seasons, the yield of Natal Common kernels was lower at 80,000 plants per acre than at 40,000 plants per acre. Over three seasons, maximum kernel and h g yields were achieved at 40,000 plants per acre ; the kernel yield at this population was 35 per cent greater than at 10,000 plants per acre. With early-planted Natal Common, 2.ft rows gave an 11 per cent higher yield of kernels than 3 f t rows, but with later planting there was no significant effect of inter-row spacing. The optimum economic seeding rates were estimated approximately as 30 lb an acre for Virginia Bunch and 45 lb an acre for Natal Common.


Sign in / Sign up

Export Citation Format

Share Document